
An Experimental Analysis of the Opportunities to Use Field

Programmable Gate Array Multiprocessors for On-board Satellite

Deep Learning Classification of Spectroscopic Observations from

Future ESA Space Missions

Ioannis Kalomoiris ∗, George Pitsis ∗, Grigorios Tsagkatakis, Aggelos Ioannou,
Christos Kozanitis, Apostolos Dollas ∗, Panagiotis Tsakalides †, Manolis GH Katevenis †

Institute of Comp. Science (ICS), Foundation for Research and Technology (FORTH),
Irakleio, Greece

Abstract

Satellite-to-earth data transmissions are increasingly becoming a bottleneck, as transmission speed
improvements do not keep up with the pace of on-board data generation. Hence, on-board satellite
payload data processing becomes essential, provided such processing can be performed with a sufficiently
small energy footprint. In this work we demonstrate that with appropriate pruning of weights, suit-
able data structures to reduce off-chip memory requirements, and a highly parallel application-specific
architecture, Field Programmable Gate Array (FPGA) technology can be used for on-board satellite
processing of observation by Convolutional Neural Network (CNN) architectures, and at an order-of-
magnitude smaller energy requirements compared to Graphics Processing Units (GPUs) running the
same algorithms. We demonstrate a 0.4% error vs. results from Tensorflow running on GPUs towards
estimation of the galaxy redshift from spectroscopic observations. The results are from actual execu-
tions on FPGAs which have space-qualified equivalent parts. The main contribution of this work is the
demonstration that accurate observation analysis task can be performed in space, so that only critical
information is transmitted to ground stations instead of raw data.

1 Introduction

The exponential growth of data during the last years is an undeniable fact, leading to the need for proper
management. As anticipated, in the 21st century global data are cracking the zettabyte barrier. Extracting
and analyzing these amounts of information is difficult or even impossible using conventional software tools
and technologies. The rapid explosion of digital data brings big opportunities for innovative methods and
creates the field to explore ways to extract a high-level understanding of the low-level information given
by raw data such as images, video and speech sequences. Among the proposed methods, Convolutional
Neural Networks (CNNs) [4] have become the driving force by achieving accuracy even better than humans
in many applications related to machine vision (e.g detection [1], classification [5], segmentation [10]) and
speech recognition [6]). Satellite based spectroscopic imaging sensors produce massive volumes of data at
very high rates. The automated analysis of such observations via machine learning algorithms, e.g. for
the precise estimation of the redshift associated with individual galaxies, requires massive floating point
operations, generally performed on Graphics Processor Units (GPU). This form of processing is fast but

∗also at the School of ECE, Technical University of Crete, Chania, Greece
†also at the Dept. of Computer Science, University of Crete, Irakleio, Greece

1



1.1 Scientific Contributions

requires substantial energy for the computation, and thus necessitates the transmission of the acquired mea-
surements to ground stations for processing in large data centers. An alternative technology to GPUs is
Field Programmable Gate Arrays (FPGAs), which often require substantially less energy per computation
compared to GPUs, but are considered too slow for state-of-the-art machine learning methods like CNN
based inference. In this work, through the collaboration of two EU Horizon 2020 projects, namely EuroEXA
and DEDALE, we demonstrate experimentally that using (i) appropriate data structures to reduce memory
bandwidth, (ii) compressed fixed point indices to clustered floating point weights and (iii) massive pipelining,
FPGA-based computing can yield extremely high (in the order of 99%) classification accuracy vs. GPUs
in the context of top-one classification, at an order-of-magnitude less energy. For this work we considered
optimized Tensorflow codes running on various GPUs vs. our proposed FPGA-based architecture for galaxy
redshift estimation from extended wavelength range spectroscopic measurements using simulated measure-
ments which are in-line with the publicly available specification of the upcoming ESA Euclid space telescope
mission [3]. We demonstrate our results on actual runs in hardware developed within the ExaNeSt project
and deployed by EuroEXA, namely the Quad FPGA Daughter Board (QFDB). It offers substantially lower
latency vs. a similar-technology Nvidia P1000 GPU for batches of any size, better throughput for batches up
to 30 spectral profiles (which can scale out to any batch size), and also roughly an order of magnitude better
energy consumption for the same computations. So it is becoming an interesting technology for on-board
satellite deep learning classification tasks. An important aspect of this work is that the FPGA model used
in this work has an equivalent rad-hard part qualified for space applications.

1.1 Scientific Contributions

The scientific contribution of this work is focused on two aspects: (i) the demonstration that substantial
weight pruning and clustering can result in significantly smaller memory transfers, and (ii) the presentation
of an appropriate FPGA-based architecture which is highly competitive to GPUs in latency, throughput, and
energy requirements. We consider the problem of spectroscopic redshift estimation and employ a 1D multi-
layer CNN architecture for the estimation of spectroscopic redshift by dividing the redshift range [1,1,8) into
800 equally spaced classes, as described in [9]. The proposed CNN network is parameterized by 22,776,272
(64-bit, double precision floating point) weights, meaning 173.77 MB, thus it is essential to reduce its size
efficiently to accelerate the network.

A pipeline was originally created at each layer separately and then it was expanded between the layers. In
order to achieve this, we have to transform the order in which the layers export their results so that the next
layers are able to start their process before the previous layers complete their own. Another challenge was to
limit I/O transactions which are the main bottleneck in every FPGA implementation. We investigated two
architectures for a single FPGA (ZCU-102) and the quad FPGA (QFDB). The implemented accelerator was
able to achieve 2.5x speedup and 10x energy efficiency over GPU NVIDIA-Quadro-K2200. Both speedup
and energy efficiency play an important role when targeting on-board satellite applications. An investigation
of different network parameters in system performance is reported in [8].

2 Reduction of Memory Footprint and Requirements

After a Robustness analysis implemented on the structure of the CNN we present the three main techniques
and their resulting effects in the CNN processing. A more detailed description of the methodology is available
in [7]. These are:

• Clustering of weights

• Hierarchical structure of clusters

• Inverse density normalization

All of our models have been evaluated with MATLAB and the results were compared with the TensorFlow
“golden standard”. The CNN was designed and trained using the TensorFlow toolbox, while the FPGAs

2



were tasked with the inference procedure, where spectra were fed into the network in order to predict the
associated target classes.

In FPGA designs memory-related constraints such as memory-bandwidth, on-chip Block RAM (B-RAM)
size, memory requirements, etc., are the performance bottleneck of most computational applications. Espe-
cially for implementing CNN in FPGA-based systems, memory is a performance inhibitor, since most of the
time, the challenge is to fit the model into internal B-RAMs. Since these types of networks require typically
from tens to hundreds of MB (173.7 MB in our case) it is obvious that low-MB B-RAMs are not a solution
(4MB in our case). Of course modern FPGAs support D-RAMs but its limited memory-bandwidth is their
main disadvantage. Thus, it is important to understand how weights are distributed in the network stages
and to find ways to reduce the overall memory footprint. Table 1 presents the memory footprint of the
weights and the stages of the signal using double floating point.

Table 1: Weights Memory Footprint

Layer #Weights Footprint

conv1 144 1.1KB
conv2 2,064 16.1KB
conv3 2,064 16.1KB
dense 22,771,200 173.7MB

Using Fixed Point (static or dynamic), we observe that there is indeed a significant improvement in
memory footprint but as we reduce bit-width, the accuracy of the network decreases. So, we opted for a
hybrid solution, which provides floating point format for the kernels (using double or single precision) with
much less memory footprint. The idea is to group weights according to their values in k centroids and store
their values in a codebook as shown in Figure 1. Thus, instead of storing in off-chip memory the value
of each weight, only the index of the corresponding centroid in a shared code-book is stored. Using this
quantization, given k centroids, we only need log2k bits to encode the index. There are several algorithms
to cluster these centroids such as Lloyds or K-means. These optimizations in our network concern the dense
layer only because this is the main memory bottleneck.

Figure 1: Clustering : A sample of Clustering 4.

An ideal case would be to use Lloyds quantization with 16 centroids (i.e. 4-bit). We developed some
techniques so that we can drop the error to lower levels. A problem that arises from a straightforward
application of the Lloyds clustering, is that Lloyds is trying to group weights without understanding their
differential importance. For example, weight with value 0.69 is much more important for the network than

3



weight with value 0.0023. Larger weights play a more important role vs. smaller weights [2], but their density
is inversely proportional to that of smaller weights.

Inverse Density: Our next step is to add normalization to the clustering algorithm by providing an
initial codebook. By knowing that density is inversely proportional to the importance of weights, we propose
to initialize the codebook, starting from the minimum value and ending up to the maximum, trying to have
a high resolution at the values with large absolute magnitude and as we approach small values to reduce
resolution linearly.

Hierarchical Clustering: In addition, we address the same problem from another point of view.
As long as we use a larger number of centroids, we increase the resolution across all values (large and
small). Thus, we force the algorithm to pay more attention to high values. Then if we apply the clustering
algorithm hierarchically we will come up with a better resolution at weights that are of greater importance
to us. Table 2 and Figure 2 present the impact of compression on error rates which we observe after the
use of our techniques (Hierarchical Clustering and Inverse Density Normalization). Thus we end up with a
minor 0.6 % error.

Table 2: Final Compression Methods

Method (#Centroids) Bitwidth Error rate (%) Compression

Clust. (256) 8 0.03 8x
Clust. (128) 7 0.09 9.1x
Clust. (64) 6 0.16 10.7x
Clust. (32) 5 0.26 12.8x
Clust. (16) 4 1.37 16x
H.Clust.& Norm. (16) 4 0.6 16x
Clust. (8) 3 4.6 21.3x

Clust. = Clustering,

H. Clust. = Hierarchical Clustering,

Norm. = Inverse Density Normalization

Figure 2: Clustering 16: Error rate for Clustering methods.
Clust. = Clustering , H. Clust. = Hierarchical Clustering

4



3 FPGA Architecture

The CNN-based inference Hardware Accelerator was implemented using the Xilinx Vivado Design Suite - HL
System Edition 2017.1. The tools used are the Vivado HLS, Vivado IDE, and Xilinx SDK. Vivado HLS also
provides (optional) directives that can be used to optimize the design: reduce latency, improve throughput,
and reduce area and device resource utilization of the resulting RTL code such as Pipeline, Array Partition
and Dataflow.

Our architectures targeted two FPGA platforms, the Xilinx ZCU102 and the QFDB. The Quad-FPGA
Daughter-Board (QFDB) designed as part of the EU-ExaNeSt project in order to offer both high compute
density and high flexibility. It contains four Xilinx Zynq Ultrascale+ FPGAs (model: ZCU9EG).

3.1 System Architecture

In the system architecture we integrated the reduced memory footprint of the weights via sophisticated
clustering schemes as shown in the previous sections, with a huge pipeline comprising of all the signals
entering the system as well as the communication between the convolutional layers and then with the fully
connected layer. Subsequent resource optimizations were performed in order to fit the network into the
FPGA.

Figure 3: Datapath of the final Architecture

3.1.1 Embedding Compressed Weights

Originally, the analysis was done to reduce the memory footprint of the weights of the fully connected layer,
because this is the main memory bottleneck of the algorithm. Furthermore, compressed weights are used in
the I/O streaming interface during the processing. We used 256-bit channel from the memory (2-DMA of

5



3.1 System Architecture

128 bits) based on the previous analysis on memory buses. Each compressed weight has a 4-bit precision.
Therefore we can stream 64 weights in one cycle (stream read). This gives us a possibility for a huge
parallelism at the operation level.

3.1.2 Pipelining Convolutional Layers

The next step is to try to get the most out of all available resources. To accomplish this, a pipeline must
be created between the layers of the network (Convolutional and Fully Connected) as shown in Figure 4, in
such a way that different parts of the input signal are processed at the same time by the 4 entities.

Figure 4: Convolutional Layers Time-Chart of the final Architecture

3.1.3 Resource Optimizations

It is important to ensure that we use efficiently the resources at our disposal. After the successful completion
of the first architecture, we introduced another level of parallelism, i.e., the use of batching. Instead of
computing the results for a single input signal, we process data for two input signals in parallel. A brute-
force approach would be to insert another instance of the already existing accelerator to implement Batch 2.
This would, however, lead to a doubling of resources. A better approach is to integrate batch 2 into a single
architecture in HLS, which avoids duplication of resources and is easier for the HLS tool to route.

3.1.4 Batching

Given that the vast amount of I/O comprises of the weights, the overhead to process multiple datasets (with
the same weights) is minimal, as long as the FPGAs have resources for the processing. It turns out that
the FPGAs do have the resources for two such datasets, leading to the ”Batch 2” architecture, meaning
to run the same algorithm (same weighs, same connectivity) on two datasets. The I/O is not increased
substantially - it grows only by 0.0001%. The reason why we can not proceed to larger batches is due to
resource restrictions. Table 3 shows the relative performance of the final architecture, for batches of size
1 and 2. We note that the complete input-to-output performance for both batch sizes is lower than the
sum of the parts, which is expected given that the pipeline is very deep and it takes some time to fill up,
however, the performance for batch 2 is twice that of batch 1 because the I/O overhead is minimal, and the
two compute engines run in parallel.

6



Table 3: Final Architecture Performance

Modules Latency Comp. Performance Bandwidth
(cycles) (GFLOPS/s) (GB/s)

conv (b=1) 263K 14.3 1
dense (b=1) 439K 25.8 8.23
conv+dense (b=1) 459K 33.1 9.23
conv (b=2) 264K 28.7 1
dense (b=2) 441K 51.6 8.23
conv+dense (b=2) 459K 66.1 9.23

GB=Gbytes, b = batch

4 Results

In this section, we present the results of the proposed framework, as summarized in Tables 4 and 5. These
results were obtained from the final architecture, ported to both the ZCU-102 and the QFDB platforms,
designed to make the most out of our resources. Comparisons were made with the GPU platform NVIDIA
Quadro K2200, on latency, throughput, power, and energy for 10K input spectral signals, as shown in Table 5.
The energy efficiency, i.e. spectrum/joule is quite noteworthy for a technology with the prospect of getting
spaceborne.

Given that GPU technologies as well as FPGA technologies change, it is well worth mentioning why the
comparison was made against the specific model. The reasons are two: (a) that it is of a corresponding
technology as the FPGAs we used, and (b) that it has a space-qualified version - the specific model is
designed to be low-power and suitable for aerospace applications. Thus we compare a recent generation with
a space qualified FPGA part vs. a recent generation with a space qualified GPU. More recent GPUs may
have a 4X energy efficiency improvement vs. the K2200, however, there are newer FPGA platforms as well,
as we expect that the trend will continue to favor the FPGA platform in terms of energy efficiency.

Table 4: Architecture comparison with GPU

ZCU-102 QFDB K2200

Clock Frequency(MHz) 250 250 1124
Throughput(Signals/s) 1084 4334 2000
Latency(s) 0.003 0.003 0.06
GFLOPS 66.1 265 122.5
Total On-chip Power(Watt) 11.8 47.3 300
Energy Consumption(Joule) 108.8 109.1 1.5K
Signals/Joule 91.6 91.6 6.66

Table 5: Speedup and Efficiency over GPUs

ZCU vs K2200 QFDB vs K2200

Latency speedup 20x 20x
Throughput speedup 0.55x 2.17x
Power Efficiency 22x 1.83x
Energy Efficiency 11.9x 11.9x

7



5 Conclusions

In recent years Convolutional Neural Networks (CNNs) have enjoyed extreme growth due to their effec-
tiveness in complex signal analysis problems. The purpose of this study is to accelerate a specific-CNN
for space-borne observation analysis using Reconfigurable Logic (FPGAs). After carrying out an extensive
Robustness Analysis, computational workloads and memory accesses were analyzed, compression methods
and algorithmic optimizations were investigated towards exploiting FPGA parallelism. At the CNN network
level, optimizations of the convolutional and fully connected layers were presented and compared, while
approximate computing optimization methods were examined in order to minimize the a potential decrease
of the Network’s accuracy. Two platforms, the ZCU102 and QFDB (a custom 4-FPGA platform developed
at FORTH) were considered. The implemented accelerator was able to achieve 20x latency speedup, 2.17x
throughput speedup and 11.9x energy efficient vs. the GPU NVIDIA-Quadro-K2200 which has low-power
consumption and is suitable for aerospace applications.

6 Future Work

Our next effort is to scale out this study to more FPGAs systems. Our top priority is to scale this work to the
Mezanine that hosts four QFDBs (16-FPGAs in total) and which has been already developed at FORTH,
expecting a linear speedup due to the parallelism of the application. In addition, we will be targeting a
larger FPGA in order to increase the internal parallelism by adding larger batches which will also lead to an
almost linear speedup. Finally, since the use-case considers astrophysics applications and is focused on the
on-board signal processing, it would be important to study newer generation FPGAs that have resistance
to space radiation. The FPGA’s suitability for on-board processing is justified by the increase in energy
efficiency and throughput compared to GPUs, and the present work has already been performed on FPGAs
which have space-qualified equivalents.

7 Acknowledgements
This work was carried out with support from the EuroExa (Grant Agreement 754337) and the DEDALE
(Grant Agreement 665044) projects, funded by the European Union Horizon 2020 Research and Innovation
Programme. The authors would like to thank Radamanthys Stivaktakis, Theodoros Zois, and Antonis
Nikitakis for their contribution.

References

[1] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages
1440–1448, 2015.

[2] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[3] R. J. Laureijs, L. Duvet, I. E. Sanz, P. Gondoin, D. H. Lumb, T. Oosterbroek, and G. S. Criado. The
euclid mission. In Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave,
volume 7731, page 77311H. International Society for Optics and Photonics, 2010.

[4] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436, 2015.

[5] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431–3440, 2015.

[6] H. S. J. K. Olga Russakovsky, Jia Deng. Subject independent facial expression recognition with robust
face detection using a convolutional neural network, 2015.

8



REFERENCES

[7] G. Pitsis. Design and implementation of an fpga-based, 2018. URL http://dias.library.tuc.gr/

view/manf/79094.

[8] G. Pitsis, G. Tsagkatakis, C. Kozanitis, I. Kalomoiris, A. Ioannou, A. Dollas, M. Katevenis, and
P. Tsakalides. Efficient convolutional neural network weight compression for space data classification on
multi-fpga platforms. In Acoustics, Speech and Signal Processing (ICASSP), 2019 IEEE International
Conference on. IEEE, 2019.

[9] R. Stivaktakis, G. Tsagkatakis, B. Moraes, F. Abdalla, J.-L. Starck, and P. Tsakalides. Convolutional
neural networks for spectroscopic redshift estimation on euclid data. arXiv preprint arXiv:1809.09622,
2018.

[10] P. B. Ying Zhang, Mohammad Pezeshki. Towards end-to-end speech recognition with deep convolutional
neural networks., 2017.

9

http://dias.library.tuc.gr/view/manf/79094
http://dias.library.tuc.gr/view/manf/79094

	Introduction
	Scientific Contributions

	Reduction of Memory Footprint and Requirements
	FPGA Architecture
	System Architecture
	Embedding Compressed Weights
	Pipelining Convolutional Layers
	Resource Optimizations
	Batching


	Results
	Conclusions
	Future Work
	Acknowledgements

