

On-Board Data Processing Workshop ESA ESTEC 25-27 February, Noordwijk, The Netherlands

DEEP LEARNING FOR ENHANCED ON-BOARD AUTONOMY

L. Feruglio, M. Varile, AIKO D. Izzo, ESA Advanced Concepts Team

AUTONOMY

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

spacecraft do not take decisions in real time hours to days of delays on the ground

mega-constellations will be difficult to manage

current infrastructure is not ready for these missions

downlinked data is not always relevant

data processing is done on the ground, creating bottlenecks

Issues

Deep Learning for Enhanced On-Board Autonomy

ESA On-Board Data Processing, 26/02/2019, ESTEC

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Our technology: MiRAGE library

- Software library for autonomous operations
 - State of art autonomy: detection, planning, predictive maintenance
 - TRL 6
- Infused with Artificial Intelligence
 - Deep Learning, Knowledge-based Systems
 - In-house developed
- Compatible with ground and space segments
 - Enhances Earth Observation, Telecommunication and Scientific missions
 - Automates space missions and supports operators
- Funded by H2020 program

MiRAGE AI Library www.aikospace.com/#mirage

Co-funded by the Horizon 2020 programme of the European Union

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Product: MiRAGE library

MiRAGE library

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Complete E4 autonomy

Detection

Payload:

- Feature detection
- Segmentation
- Classification

Platform:

- Failure detection
- Anomaly detection
- Behaviour correlation

Al-based

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Complete E4 autonomy

Reasoning

Planning

Detection

Payload:

- Feature detection
- Segmentation
- Classification

Platform:

- Failure detection
- Anomaly detection
- Behaviour correlation

Al-based

Reasoning

Goal Generation:

- Relevance of the detected feature
- Characteristics of the event
- System health
- Al-based

Planning

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Complete E4 autonomy

Detection

Payload:

- Feature detection
- Segmentation
- Classification

Platform:

- Failure detection
- Anomaly detection
- Behaviour correlation

Al-based

Reasoning

Goal Generation:

- Relevance of the detected feature
- Characteristics of the event
- System health

Al-based

Planning

Scheduling:

- Timing constraints
- Availability of resources

Traditional algorithms

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Complete E4 autonomy

Autonomous Enabling reaction to events during the missions

Effective

Identifying features, objects and targets in satellite payload data

Mission cost reduction

Operations costs reduction thanks to enhanced autonomy

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Benefits enabled

DETECTION

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

- ♦ Is the data being aquired useful for the mission?
 - Basic understanding of the data acquired during the mission
 - Various types of architectures can be used
- Classification is enough to increase autonomy
 - Perform data selection / prioritization before downlink
 - Trigger enhanced acquisition modes

- Is the data being aquired useful for the mission? \diamond
 - Basic understanding of the data acquired during the mission
 - Various types of architectures can be used
- Classification is enough to increase autonomy \diamond
 - Perform data selection / prioritization before downlink
 - Trigger enhanced acquisition modes

- Why is the data useful? What is inside it?
 - Deeper understanding of the data acquired
 - CNN networks are predominant here
- Object Detection enables advanced autonomy features
 - Image crop only to relevant portions before downlink
 - Tracking of ground features
 - Generation of higher-level information

Deep Learning for Enhanced On-Board Autonomy

ESA On-Board Data Processing, 26/02/2019, ESTEC

Object Detection

- ♦ Why is the data useful? What is inside it?
 - Deeper understanding of the data acquired
 - CNN networks are predominant here
- Object Detection enables advanced autonomy features
 - Image crop only to relevant portions before downlink
 - Tracking of ground features
 - Generation of higher-level information

Deep Learning for Enhanced On-Board Autonomy

ESA On-Board Data Processing, 26/02/2019, ESTEC

Object Detection

- ♦ Why is the data useful? What is inside it?
 - Deeper understanding of the data acquired
 - CNN networks are predominant here
- Segmentation enables advanced data reduction
 - Image crop only to relevant portions before downlink
 - Understanding whether ground targets are visible

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Segmentation

- ♦ Why is the data useful? What is inside it?
 - Deeper understanding of the data acquired
 - CNN networks are predominant here
- Segmentation enables advanced data reduction
 - Image crop only to relevant portions before downlink
 - Understanding whether ground targets are visible

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Segmentation

- Can we provide insights on the acquired data?
 - Extracting high level information from an image
 - Customization of the architecture increases in importance
- The satellites provide improved services
 - From wake features to speed information
 - Estimation of ship speed for security applications

18 **QİKÖ**

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Complex estimations

HARDWARE REQUIREMENTS

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

- What is the best architecture?
 - Problem-specific
 - Platform-specific
- What performances requirements?
 - State of the art networks that traditionally win image competitions are not compatible with on-board processors
 - Mandatory to move towards smaller architectures
- Execution times are promising
 - < 1s inference time for OD on a ARM9 processor for cloud detection

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Architecture design and selection

Application complexity

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Hardware Requirements

Application complexity

Deep Learning for Enhanced On-Board Autonomy ESA On-Board Data Processing, 26/02/2019, ESTEC

Hardware Requirements

Today technology is ready for enhanced autonomy

- COTS processors are already meeting requirements for some Deep Learning algorithms to be run on-board
- Complete E4 autonomy is at reach with COTS CPUs
- Evolution of the computing capabilities is required:
 - For complex AI applications
 - For high FPS
- Enhanced autonomy will be a key driver in:
 - Reducing operations costs
 - Achieving more complex missions

Deep Learning for Enhanced On-Board Autonomy

ESA On-Board Data Processing, 26/02/2019, ESTEC

Conclusions

AIKO

Corso Castelfidardo 30/A, Torino, Italy

web: <u>www.aikospace.com</u> mail: <u>lorenzo@aikospace.com</u> mob: +39 3290918239

AUTONOMOUS SPACE MISSIONS

Deep Learning for Enhanced On-Board Autonomy

ESA On-Board Data Processing, 26/02/2019, ESTEC

Contacts