Artificial Intelligence in Space

Towards smarter spacecraft.

Knowledge for Tomorrow

Benefits of Autonomy for Space Operations

Higher levels of autonomy

- Enable new missions due to higher reactivity
- Optimize use of on-board resources and mission time
- Reduce operational cost

Self-Awareness

- Optimize downlink information throughput
- Increase safety (FDIR) through state estimation and anomaly detection
- Handle unforeseen situations

Autonomy – ESA View

Autonomy Level	Description	Functions
E-1	 Mission execution under ground control; Limited onboard capability for safety Issues 	 Real-time control from ground for nominal operations Execution of time-tagged commands for safety issues
E-2	Execution of preplanned, ground-defined, mission operations onboard	Capability to store time-based commands in an onboard scheduler
E-3	Execution of adaptive mission operations onboard	Event-based autonomous operations. Execution of onboard operations control procedures
E-4	Execution of goal-oriented mission operations onboard	Goal-oriented mission re-planning

[ECSS-E-ST-70-11C]

Autonomy – Necessary Conditions

Empowerment

• Sense the world and its own state, make decisions about what to do and carry out these decisions through its own actions

Controllability

• Human commanding to achieve a set of high-level goals which is transformed in to a sequence of actions to accomplish these

Flexibility

 Flexibly responds to off-nominal situations by adjusting its activity sequence to attain its goals

On-Board Autonomy

- High-Level Planning
- State Identification
- System Health Management

- Task Orchestration
- Progress Monitoring

- Device Access
- Raw Sensor Data
- Simple Control Loops

[[]Jonsson2007]

Artificial Intelligence

- Artificial Intelligence (AI) is the ability of a digital system to perform tasks commonly associated with intelligent beings.
- Strong AI
 - Intelligent machines with consciousness, sentience and mind that could perform any intellectual task that a human being can
- Weak / Narrow / Applied AI
 - Machine intelligence that is focused on fulfilling a narrow task
 - Computer programs that given their specific knowledge-base can come to rational decisions with the best or – in case of uncertainty – best expected outcome

Artificial Intelligence – Problem Domains

Knowledge Representation

- Representing knowledge about the world (a model thereof) such that a computer can efficiently read and process it
- Perception
 - Deduce aspects of the world given sensor input (NLP, Computer Vision, ...)

Reasoning

• Generate conclusions from available knowledge using logic (and probability)

Planning

• Finding and realizing strategies for reaching a certain goal or maximizing the utility

Learning

• Improving an algorithm's performance through experience

Machine Learning

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.

Tom M. Mitchell

Machine Learning (continued)

	Supervised	Unsupervised
Approach	Knowledge-based	Data-based
Training	Labeled data	Preprocessed data
System Insight	Semantic analysis	Pattern-based analysis
Modeling	High manual effort	Limited search space
Extrapolation	Weak	Strong
Verification	Manageable	Very difficult

Ideally, a combined system using a shallow unsupervised analysis and deep supervised diagnostics would be advisable!

Machine Learning (continued)

Classification

- Prediction of a discrete number (i.e. classes) given a number of characteristical features
- Examples:
 - Image recognition
- Regression
 - Prediction of a continuos number given an input vector
 - Examples
 - Telemetry forecasting
- Clustering
 - Grouping datasets such that datasets from the same group share certain similarities
 - Examples:
 - Image segmentation
- Dimensionality Reduction
 - Feature selection and projection
 - Examples:
 - Efficient encoding, feature extraction

Fuzzy Logic

- Fuzzyfication: Affiliation to fuzzy sets instead of sharp value
- Fuzzy relations: AND, OR, NOT
- Fuzzy inference on a IF-THEN rule base
- Defuzzification: Center of gravity of the resulting surface

Bayesian Networks

- Graphical representaion of dependencies between statistical variables in a cause-effect fashion
- Answers queries such as Pr(A = True | E = True, F = False)

Support Vector Machines (SVM)

- Given a set of labeled training data $(\vec{x_i}, y_i), y_i \in \{-1, 1\}$, an SVM calculates a hyperplane seperating the data with the widest margin possible
- Transformation to higher dimensions is possible using kernels

Artificial Neural Networks

- No inherent system knowledge
- Strong in pattern and feature recognition
- Generalization

- Large amounts of training data
 - Overfitting
 - · Verification is extremely hard
 - Highly dependent on initial values

Artificial Neural Networks - LSTM

- Long Short-Term Memories
- Temporal dependencies
 through state-keeping
- No vanishing or explosion of gradients during backpropagation
- Applications in speec recognition and time series analysis

Artificial Neural Networks - CNN

- Convolutional Neural Networks
- Applications in Image Recognition

DLR.de · Chart 17 Jan-Gerd Meß

Image Recognition - State of the Art (continued)

 ResNet (ImageNet competition winner in 2015) superseded human performance in image classification

- 3.6 Billion FLOPS
 - Infeasible for almost all on-board satellite systems
 - Hardware-acceleration desirable, even for small models

Research Focus at DLR's Institute of Space Systems

- Self-Aware Spacecraft
 - State Estimation
 - Anomaly Detection and Telemetry Selection
 - On-Board Machine Learning
- On-Board Autonomy
 - Fault Detection Isolation and Recovery
 - Goal-based Planning and Scheduling
 - Optimized Payload Operations
- Payload Processing
 - On-board analysis of multidimensional data

[Google TPU]

- Hardware Acceleration for Tensor Processing and Neural Networks
 - Heterogeneous systems
 - IP cores

Thank You!

Knowledge for Tomorrow

