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Abstract— The possibilities to observe and interact with any
given spacecraft are naturally limited compared to ground-
based systems due to a number of factors. These include but are
not limited to the availability and bandwidth of their connection
to ground, the availability of staff, communication latencies and
power budgets.
While a minimum level of autonomy is required for every space-
craft, past experiments and missions have shown that introduc-
ing more sophisticated autonomy mechanisms can drastically
increase the efficiency for many missions in terms of reliability,
science output and required operational effort.
Artificial intelligence poses an increasingly popular approach
for implementing on-board autonomy. The number of tech-
niques and variants of artificial intelligence available in the
literature is, however, just as diversified as their potential field
of application. To provide an overview of the current state
of the art of artificial intelligence and its application for space
systems, this paper provides an extensive survey on existing
techniques and algorithms as well as existing and potential
applications on board spacecraft and on ground. The survey
focuses on autonomous planning and scheduling of operations,
self-awareness, anomaly detection and Fault Detection Isolation
and Recovery (FDIR), on-board data analysis as well as on-
board operations and processing of earth-observation data.
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1. INTRODUCTION
Observability and controllability of spacecraft are naturally
limited compared to ground-based systems due to a number
of factors. These include but are not limited to the availability
and bandwidth of their connection to ground, the availability
of staff, communication latencies and power budgets.

Introducing more sophisticated autonomy mechanisms can
drastically increase the efficiency for many missions in terms
of reliability, science output and required operational effort as
past experiments and missions have shown. This autonomy
can also result in a significant drop of cost for missions that
would otherwise require extensive human operation.

The emerging use of Commercial-Off-The-Shelf (COTS)

components and their increased computational power opens
the door for more complex mission scenarios including an
increasing number of sensors and actuators to assess and
influence the current status. This, however, also enlarges
the search space for solutions regarding operation scheduling
and planning and to estimate the environmental and health
status of the spacecraft up to a degree that cannot be handled
manually. Hence, there is an increasing need for mecha-
nisms and algorithms to make spacecraft more self-aware
and autonomous. This can also enable mission scenarios
that require the spacecraft to come to its own decisions in
uncertain environments and to operate without or with only
limited human intervention.

The number of techniques and variants of artificial intelli-
gence available in the literature is, however, just as diversified
as their potential field of application. To provide an overview
of the current state of the art of artificial intelligence and
its application for space systems, this paper gives a general
introduction to spacecraft autonomy, provides an extensive
survey on existing techniques and algorithms for anomaly
detection and Fault Detection Isolation and Recovery (FDIR)
and shows existing applications on board spacecraft and on
ground.

The paper unfolds as follows: Section 2 gives a general
introduction to the terminology of artificial intelligence and
spacecraft autonomy as defined in literature and by the Eu-
ropean Space Agency (ESA). In section 3, the purpose of
anomaly detection as a foundation for the self-awareness of
systems as well as corresponding algorithms are described.
Based on these findings, section 4 describes FDIR concepts
for spacecraft and the use of Artificial Intelligence (AI) to
increase system reliability. Section 5 focuses on autonomous
operations of a selection of existing spacecraft. Subsequently,
section 6 gives an overview on related work in the literature
and section 7 wraps up the paper.

2. TERMINOLOGY
The following sections give an introduction to the termi-
nology used in this paper. These are autonomy, artificial
intelligence, anomaly detection and Fault Detection Isolation
and Recovery (FDIR).

Autonomy

Autonomy is the capability to make rational, informed, self-
determined and self-reliant decisions. In order for a system
to be called autonomous, it needs to be able to sense, think
and act in the world around it. It requires the capability to
sense its surroundings and some consciousness about its own
capabilities and their effects on its environment and internal
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state. From this knowledge about the world and about itself,
an autonomous system is able to draw conclusions and make
decisions with respect to its own goals and carry out actions
to reach these goals.

Furthermore, an autonomous system has to be able to respond
to off-nominal situations by adjusting its sequence of actions
in order to continue achieving its goal as well as maintain
safety. Commanding of an autonomous system is done via
sets of goals it shall achieve. The level of off-nominality it
can handle and the level of abstraction of its goals determines
the degree of autonomy reached by a system [1].

The European Cooperation for Space Standardization (ECSS)
defines four levels of such autonomous capabilities with level
E4 being the most autonomous. The complete list can be
found in Table 1. According to the above definition, only
systems compliant with level E4 can be regarded as truly
autonomous, whereas levels E1 to E3 deal with manually
controlled or automated rather than autonomous systems.
In contrast to autonomous systems, automated systems can
only handle situations that were explicitly foreseen by its
engineers. It will respond to these situations (i.e. events) with
so-called On-Board Control Procedures (OBCP, [2]) that are
precast sequences of actions.

Level Description Functions
E1 Mission execution

under ground control
with limited on-board
capability for safety
issues

Ream-time control
from ground for
nominal operations
Execution of time-
tagged commands for
safety issues

E2 Execution of pre-
planned, ground-
defined, mission
operations on-board

Capability to store
time-based commands
in an on-board
scheduler

E3 Execution of adaptive
mission operations on-
board

Event-based
autonomous
operations
Execution of on-board
operations control
procedures

E4 Execution of goal-
oriented mission
operations on-board

Goal-oriented mission
re-planning

Table 1. Mission execution autonomy levels according to
ECSS [3]

To achieve autonomy, a layered architecture reflecting the
different stages of perception and decision-making from
hardware functions such as control-loops to abstract goals
is most suitable [1]. Such an architecture consists of three
layers:

• The deliberative layer or planning layer is concerned with
high-level decisions, keeps track of abstract goals and derives
long-term sequences of actions to achieve them. These
sequences are then delegated to the executive layer.
• The executive layer or task sequencing layer is responsible
for orchestrating and monitoring tasks and decides - based on
its sensing abilities - when to activate or pause the execution
of elementary actions. These elementary actions are dealt
with by the functional layer.
• The functional layer or reactive layer has the fastest re-
sponse time and is concerned with the execution of elemen-

tary actions based on predefined control loops or calculations.
These are based on raw sensor readings and direct command-
ing of the underlying hardware.

Each of these layers encapsulates an infinite loop of perceiv-
ing its input variables and internal state, drawing conclusions
based on these findings and executing deduced actions. This
cycle is also referred to as the sense-think-act cycle [1]. The
layers exchange data in the form of feedback and commands
from top to bottom as depicted in Figure 1. Thus, the
entire system again forms a variation of a sense-think-act
cycle in which lower layers provide feedback to higher layers
and receive commands after the higher layers have deduced
actions according to their given input, system state and their
high-level goals.

Figure 1. Layered architecture for autonomous systems and
the Sense-Think-Act cycle [1]

A detailed survey of autonomous systems in past and present
space missions can be found in Section 5.

From the introduction above follows that autonomy describes
a set of system functions and capabilities instead of tech-
niques by which they are implemented. Artificial intelligence
is, thus, one of many possible approaches to reach autonomy.
A brief introduction to artificial intelligence (AI) is given in
the following section.

Artificial Intelligence

AI is the study of intelligence as present in computer systems
in contrast to natural intelligence to be observed in humans
and other living species [4]. More generally, for a computer
system to be called intelligent, it needs to be able to make
rational decisions based on its observings of the world (or a
simplified model thereof) and a set of goals it shall achieve.
Two different kinds are to be distinguished, strong AI and
weak AI. Strong or general AI is concerned with the imitation
or outperformance of human intelligence including sentience,
consciousness, mind and feelings. Weak or applied AI on
the other hand focuses on one narrow task or on solving
a specific problem. Since all current research in the space
domain is limited to weak AI, this paper focuses solely on
this application.
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Concerning the problem statements that AI is concerned with,
a distinction is drawn between five different categories [4]:

• Knowledge representation is concerned with the storage
of information about the world (or a model thereof) such that
a computer can efficiently process it.
• Perception is the ability to deduce aspects of the world
given sensor input. Amongst others, this includes anomaly
detection, Natural Language Processing (NLP) and Computer
Vision.
• Reasoning and problem solving generates conclusions
from available knowledge using logic and probability theory.
• Planning and scheduling finds and realizes strategies for
reaching a certain goal or maximizing a given utility function.
• Machine learning means the improvement of an algo-
rithms performance through experience.

The process of machine learning is depicted in Figure 2.
Based on a data- or knowledge base, a model is trained that
can then be queried by an application. Disregarding suitable
conditioning, selection of data and overfitting, the model gets
better with a growing database and longer periods of training.
If the model shall able to learn in the field, the application can
add data to the knowledge base during runtime and train the
model on that new data.

Figure 2. The generalized process of machine learning

All of the above categories are applied in one way or another
to modern spacecraft. The techniques that are most widely
used include but are not limited to expert systems, (deep)
artificial neural networks, fuzzy logic, model-based reasoning
and Bayesian networks [5, 6]:

Expert Systems— are used to emulate the judgement of a
human operator. To accomplish this, a set of rules is applied
to a knowledge base (the expert’s insight) containing facts
about the current status of the system and its environment.
Sophisticated learning expert systems can make additions to
either the knowledge base or the set of rules. Expert systems
require a lot of a priori knowledge about the system and its
environment to accurately model the knowledge base and rule
set.

Artificial Neural Networks (ANN)—follow the opposite ap-
proach. Instead of using a priori knowledge about the
system domain, the network is presented sample data, most
preferably from real-world applications, to let the network
find patterns in the data, extract important features and find a
problem solution by itself. They are mostly used for pattern
recognition (in both time-series and multi-dimensional data
such as images) and for control of highly nonlinear systems
that may need real-time adaption (i.e. learning). With rising
computational power on-board, the application of deeper
(i.e. consisting of more layers of neurons) and more capable
ANNs becomes feasible.

Fuzzy Logic—is an extension of classical set theory to fuzzy
sets that can be used to model complex nonlinear systems.
Their implementation is typically simpler and requires less

computation effort compared to ANNs. They are often
used as substitutes for proportional-integral-derivative (PID)
controllers since their handling of uncertainty makes them
much more robust. Their implementation, however, requires
extensive a priori expert knowledge.

Model-based Reasoning—is based on a model of an aspect of
the system that predicts the actual system’s behaviour. Based
on the quality of these predictions, diagnostics can reason
about the state of the system and its environment.

Bayesian Networks—can be used to identify the system state
based on prior and likelihood beliefs in a set of system
variables. They provide a means to model uncertainty and
partial knowledge in the observation domain and are mostly
implemented as a passive observer system that provides input
to a superordinate expert system or ANN. An extension to
the model called Dynamic Bayesian Networks (DBN) can
express dynamic behaviour over discrete time steps by ref-
erencing past values of certain variables [7].

An important aspect of artificial intelligence is the amount
of expert knowledge woven into the system. A system that
is purely based on data (i.e. the system is unsupervised)
may be able to detect patterns and anomalies in the data it
has seen, but it is not able to draw semantic conclusions
about the underlying system, perform diagnostics or devise
actions. Systems that include a lot of expert knowledge (i.e.
supervised systems) in their knowledge on the other hand pro-
vide deep insight into the systems parameters and behaviours.
However, these systems require a lot of effort on the modeling
side, deep a priori knowledge about the system and may fail
when they find themselves in unforeseen situations. Hence,
a combination of data- and expert knowledge-based on-board
analysis may be advisable.

One important aspect of autonomy and an open field of
research for artificial intelligence is the so-called anomaly
detection. Anomaly detection discovers patterns in a stream
of data and can identify deviations from these patterns. The
capability to detect and classify such anomalies provides
important input to superordinate decision-making systems.
Anomaly detection is briefly introduced in the next section
and covered in depth in Section 3.

Anomaly Detection

Anomaly detection is concerned with the recognition of pat-
terns in some underlying set of datapoints and the discovery
of deviations from these patterns. For spacecraft, this is
essential for detecting off-nominal situations and responding
accordingly. Regarding the management of on-board data
perceived by the spacecraft, the ECSS defines two levels of
autonomy that are described in Table 2 [3].

Level D1 covers capabilities of storing essential mission
data including event reports during ground outage. For
autonomous systems and anomaly detection, however, a
consistent storage of all mission data is essential to have a
broad database for state estimation, pattern recognition and
decision-making as covered by D2. This is especially true if
machine learning on ground is involved since the ability to
downlink data perceived during ground outages is crucial.

Anomaly detection is performed on time-series data like
temperature readings over time for detecting off-nominal sit-
uations and states, but also on multi-dimensional like images,
mostly to detect science opportunities or filter the amount of
data selected for downlink.
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Level Description Functions
D1 Storage on-board of

essential mission data
following a ground
outage or a failure
situation

Storage and retrieval
of event reports
Storage management

D2 Storage on-board of
all mission data, i.e.
the space segment
is independent from
the availability of the
ground segment

As D1 plus storage and
retrieval of all mission
data

Table 2. Mission data management autonomy levels
according to ECSS [3]

A very detailed survey on anomaly detection for discrete se-
quences can be found in [8]. Section 3 focuses on techniques
feasible for the application in the space sector and describes
an exemplary selection of applications in space missions,
mostly health monitoring of spacecraft.

Fault Detection, Isolation and Recovery (FDIR)

For the scope of this paper, it is first necessary to establish a
sound definition of fault and failure. A fault is a deviation of
at least one system parameter from its desired value. This can
be a temperature value that is out of limit, but also a flipped
bit in the computer’s memory due to a Single Event Effect
(SEE). A failure is the manifestation of a fault in terms of
system functionality, i.e. the (partly) loss of system services.

In order to guarantee system availability, reliability and per-
formance, the correct handling of faults such that they do
not lead to a failure is essential. In spacecraft design, this
is called FDIR. Fault detection is the capability of a system
to identify that a fault has occurred. It is usually followed
by fault isolation to determine the exact location (subsystem,
memory area, etc.) of the fault. Ultimately, in the fault
recovery step, the system tries to transfer to a safe state of
execution in which the fault has been mitigated. This last step
is usually implemented in multiple layers such that the system
handles faults on the abstraction level at which they occur.
Higher levels are involved in the process of fault handling
only if strictly necessary.

In cases a fault cannot be handled and leads to a failure,
the ECSS defines two levels of autonomy when it comes to
FDIR (cf. Table 3, [3]). F1 describes the capability of a
system to (partly) transfer to a safe state, report anomalies to
ground and essentially wait for further instructions. A system
reaching level F2 on the other hand is capable of resuming
mission operations after a failure by transferring to a nominal
operation configuration through reconfiguration. This may
or may not include a decline in performance but the overall
generation of mission products is resumed nevertheless.

A detailed survey on existing FDIR techniques and their
application in space missions can be found in Section 4.

3. ANOMALY DETECTION
One of the goals of introducing autonomy to spacecraft
is to have a cognitive system, that is able to perceive its
environment and internal state, draw conclusions based on
its goals and act accordingly without ground intervention. In

Level Description Functions
F1 Establish safe space

segment configuration
following an on-board
failure

Identify anomalies
and report to ground
segment
Reconfigure on-board
systems to isolate
failed equipment or
functions
Place space segment
in a safe state

F2 Re-establish nominal
mission operations fol-
lowing an on-board
failure

As F1, plus reconfig-
ure to a nominal oper-
ation configuration
Resume execution of
nominal operations
Resume generation of
mission products

Table 3. Mission fault management autonomy levels
according to ECSS [3]

this regard, being able to recognize patterns and anomalies
is important to detect off-nominal situations during mission
operation.

A distinction is made between point anomalies, contextual
anomalies and collective anomalies. For point anomalies, a
data point is considered an anomaly if it is different from all
the normal data points. For a data point to be considered
a contextual anomaly, its surrounding data points (context)
have to be taken into account. For example, a high tem-
perature that is nominal during daytime would be considered
an anomaly when observed during nighttime. For collective
anomalies, a whole sequence of data points is considered
anomalous, although single data points, when examined in-
dividually, may occur nominal. Obviously, the detection of
contextual and especially collective anomalies is significantly
harder compared to the detection of point anomalies.

Traditionally, the detection of point anomalies is performed
using Out-Of-Limit (OOL) checks for a set of parameters
with predetermined upper and lower bounds. Nowadays, hard
and soft limits are defined to be able to report events early
in the build-up of an anomaly. Furthermore, different limits
can be applied according to the current state (orbital period,
spacecraft mode, etc.). This also covers simple contextual
anomalies. However, even these more sophisticated OOL
checks cannot analyze actual patterns in the underlying data
and are therefore bound to miss a lot of anomalies. In [9], an
example of Venus Express is given in which a reaction wheel
showed rising friction which could only be found by manual
inspection.

There are three main categories of anomaly detection: Super-
vised, unsupervised and semi-supervised. In the supervised
case, both anomalous as well as nominal sequences of data
are available for training and each sequence is labeled one
or the other. This has the drawback that, during operations,
first-time anomalies might be missed by the system, because
it has never seen them before and classifies them as nominal
behaviour. In the unsupervised case, the system makes the
assumption that anomalies happen far less often then nominal
behaviour. Thus, it tries to learn the general pattern of the
training data and classifies any deviation as an anomaly. If,
however, similar anomalies can frequently be observed, the
system may erroneously classify these as nominal behaviour.
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In the semi-supervised case, the training data consists only of
nominal data. Again, the system learns to find patterns in the
underlying data but engineers can now be sure that they do
not feed anomalies to the system during training.

In the following, the current state of the art in anomaly detec-
tion both inside and outside the space domain is described.

One mathematically and computationally simple approach is
to calculate a set of statistical measures (minimum, maxi-
mum, average and standard deviation) for a sequence in time
of a given parameter and then compute the Euclidean dis-
tance to other timesequences that have already been observed
[9, 10]. The probability of having observed an outlier or
anomaly is then estimated using Local Outlier Probabilities
[11]. The technique has successfully been used to perform
ground-based analysis of the telemetry of the ESA X-ray
space observatory XMM-Newton [12].

Support Vector Machines (SVMs) present another exploitable
approach to anomaly detection. SVMs are a mathematical
procedure for classification and regression that transforms its
input data to higher dimensions under the assumption that
the data becomes linearly separable by a hyperplane. This
is done using kernels as similarity functions. Typical kernels
are linear, polynomial or radial basis function (RBF) kernels.
During the backward transformation, this hyperplane may
become a non-linear separator based on only a few training
examples (support vectors) that have been found necessary.
Since there may be infinitely many hyperplanes, in SVMs as
opposed to other classifiers, the hyperplane minimizing the
L2 norm and maximizing the minimum margin from any data
point to the hyperplane is selected. This results in a simple
and robust hyperplane. SVMs present a supervised mean
of machine learning. For anomaly detection, this implies
that labeled training data for both nominal and off-nominal
situations has to be available. The problem of having only
a limited number of anomalies, that are by definition rare
compared to nominal behaviour, is addressed in [13] by
training an SVM in multiple steps with an increasing number
of samples. Training is further accelerated by weighting
input features before training according to their kernel-based
distance. The results have been verified using data from the
Interferometry Program Flight Experiment II (IPEX II) [14].

Another possibility is to use only nominal data which elim-
inates the need for expert knowledge to label the data. The
proposed approach also uses kernels but is ”knowledge-free”
in that it does not need a priori expert knowledge [15]. Here, a
timeseries of input data is transformed to a sequence of over-
lapping windows. These windows are transformed to higher
dimensional spaces using a kernel and a Principal Component
Analysis (PCA) is applied to resolve this dimensionality to
manageable degree. The application of PCA returns linear
combinations of the original features that represent trends
in the underlying data and are uncorrelated to one another.
Subsequently, the distribution of the direction of principal
components (the principal component vector) from the PCA
is estimated. The principal component vector of newly
acquired windows can now be compared to this distribution.
From its likelihood, the anomaly score is derived and the
window, given that this score surpasses a given threshold,
is considered anomalous. The results have been validated
using simulation data of a simulated orbital transfer vehicle’s
thrusters provided by JAXA.

A method called Mixture of Probabilistic Principal Compo-
nents Analyzers and Categorical Distributions (MPPCACD)

Figure 3. A single neuron as modeled in artificial neural
networks [18]

[16] builds on dimensionality reduction and clustering. First,
the multi-dimensional data is filtered for trivial outliers by
using only the αth and (100 − α)th percentiles of a given
timeframe and normalized according to the same percentiles.
During training, a low-dimensional statistical model for each
cluster of the operational data is learned using previous
nominal data. By learning the distribution of both continuous
as well as discrete status parameters for a number of modes
including the distribution of modes itself, the approach is
capable of handling high-dimensional multimodal data. The
approach is verified using real-world data from JAXA’s Small
Demonstration Satellite SDS-4.

Wavelet-based preprocessing is another possibility to extract
frequency features of different timescales [17]. In this ap-
proach, the entire mission data is then clustered regarding
these features in an unsupervised fashion using Euclidean
distances. An expert then classifies a cluster that represents
normal operation. For the anomalous clusters, significant
features that differentiate these from the nominal cluster are
generated. By presenting these significant features and the
resulting clusters to an expert, the clusters are labeled for
different nominal modes or as true anomalies. However, since
the described approach needs access to all mission data that
has been acquired in the past, this method is only suitable for
ground analysis. The approach has been verified using real-
world data of the power system of NASA’s Lunar Atmosphere
and Dust Environment Explorer (LADEE).

Moving from statistical methods to neural networks, there are
several architectures tailored for different purposed. Prob-
ably, the best known is the Multi Layer Perceptron (MLP)
[18, 19]. This architecture is built from artificial neurons that
are supposed to model the way that actual neurons in a brain
should work. This model is depicted in Figure 3. For a given
input vector x and the neuron’s weight vectorw, the dot prod-
uct is calculated which is then fed into the activation function
f . The result is the neuron’s output y. Typically, the activation
function f is a nonlinear function like a sigmoid such that
the neural network can learn nonlinear patterns. By stacking
layers of parallel neurons, powerful models can be created
that learn a given function of the input by comparing their
output to some expected value regarding an error function.
By propagating the first derivative of this error function with
respect to the single weight back (back-propagation) through
the whole network, the weights are slowly adjusted to match
network output and expected values.

Other types of neural networks include, amongst many more,
Self-Organizing Maps (SOM, also called Kohonen networks,
[20]), Recurrent Neural Networks (RNN, [21]), Convolu-
tional Neural Networks (CNN, [21]) and Long Short-Term
Memories (LSTM, [22, 23]. RNNs allow, in contrast to so-
called feed-forward networks like MLPs, recurrent connec-
tions such that the output of a neuron is fed back to it in the
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next time-step. For training, however, RNNs have problems
learning long patterns in the time domain, basically because
the error function’s gradient is multiplied a lot of times during
back-propagation, resulting in either vanishing or exploding
gradients and weight changes. LSTMs overcome this issue by
introducing a memory cell protected by gates for input, out-
put and the memory itself (forget gate, [23]) which replaces
the multiplications in the back-propagation by additions [22].
Figure 4 shows a single LSTM cell with input, output and
forget gates (i,o,f ) as well as the new input (int).

Figure 4. LSTM cell with forget gate [23]

LSTMs can be trained on a time sequence to predict the next
upcoming value(s) as realized in [24]. Here, the prediction
error is used to rate values as potential anomalies regarding
a dynamic threshold. This threshold is set such that the
removal of all outliers above it results in the maximum
decrease of errors while penalizing by the number of found
anomalies. The experiments are validated using data from the
Soil Moisture Active Passive (SMAP) satellite and the Mars
Science Laboratory (MSL) rover, Curiosity.

Autoencoders, while not a specific type of network by them-
selves, (cf. Figure 5) present a way of assembling neural
cells of any kind such that the network learns a compact
representation (i.e. encoding) of the data in one of its hidden
layers. At some point in the network, it is forced to reduce
the dimensionality of the input data (cf. grey box in Figure 5)
and therefore has to extract the most important features of the
training data by itself.

In [25], the authors describe an approach using autoencoders
to reduce the dimensionality of the telemetry data. Under the
assumption that outliers or anomalies are hard to represent in
a smaller feature space, a model is trained to represent a the
data in a lower dimension while still being able to reconstruct
the original value. Figure 5 gives a schematic overview of
the approach. In [25], a time-series of features is enriched
by extracting overlapping sliding windows to model temporal
dependencies and by calculating features from these windows
for comparing different sliding windows. The data is then
fed to a parallel CNN- and LSTM-based autoencoder that is
trained to reconstruct the original data. The magnitude of
the reconstruction error is then an indication for the degree to
which the input data might be an outlier.

A similar approach of LSTM-based autoencoders is devel-

Figure 5. Neural network-based autoencoder for anomaly
detection

oped in [26] and [27]. The former is very similar to [25], but
thresholding for anomalies is done using a normal distribution
of the absolute errors and a likelihood estimation for any
observed reconstruction error.

In [27], a MLP-based autoencoder together with an LSTM
are applied to ground-based anomaly detection in satel-
lite telemetry data at the German Space Operations Center
(GSOC). The autoencoder is responsible for automatic fea-
ture extraction that is combined with statistical features for a
given time window. The LSTM is then used to predict the
upcoming 4.5 hours of telemetry data. Anomaly detection is
performed both on the LSTM-generated data to predict future
anomalies as well as on the extracted features of observed
telemetry data using statistical clustering and a variant of
the Intrinsic Dimensional Outlier Score (IDOS, [28]). The
approach is validated using real-world data from the TET-1
satellite.

A summary of approaches for thermal anomaly detection,
polar cap edge detection and aerosol opacity estimation for
the Mars Odyssey spacecraft are described in [29]. Detection
of thermal anomalies on Mars using data of the THEMIS
instrument is performed by counting the number of pixels in a
thermal image that exceed a certain threshold. If this number
is in a certain range, the image is flagged as containing a
thermal anomaly. Polar cap edge detection is also performed
using image data from the THEMIS instrument. In the
temperature histogram, a dip can be observed when in orbit
over the polar cap edge. By setting a threshold according to
this dip, the spacecraft can reliably determine whether it is
over the polar region. The analysis of these histograms also
led to more evidence of water ice on Mars since their presence
in a picture results in a very specific in the histogram. Ulti-
mately, the detection of high opacity events in the Martian
atmosphere was performed by using SVM regression. These
events can be indicators for upcoming dust storms and also
increase the data quality for surface mineralogy from orbit.

An approach from the domain of robotics towards semantic
event or anomaly detection and classification based on time-
series shapelets is described in [30]. Time-series shapelets
are short, potentially multi-dimensional characteristic se-
quences of sensor readings that can be used to identify known
events in a stream of data.The authors successfully use these
shapelets to detect events during wiping actions performed by
a robotic arm.
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4. FAULT DETECTION, ISOLATION AND
RECOVERY

In the last section about anomaly detection, the techniques
presented were mostly data driven, thus providing little in-
sight into the space system. While this may be enough to
detect whether the system exhibits some strange behaviour or
whether some fault was observed, for isolating and recovering
from the fault (i.e. the upper FDIR layers), a deep under-
standing of the underlying system, its actions, limitations and
behaviour is crucial.

Hence, designing and implementing an FDIR concept is
amongst the most complex tasks in a spacecraft development
because it involves all subsystems and is very critical for
system availability, reliability and performance. Current
FDIR processes built on the results of Failure Modes, Effects,
and Criticality Analysis (FMECA) and Fault Tree Analysis
(FTA). However, these can only applied late in the devel-
opment process which prohibits FDIR to become an integral
part of the system. An extensive survey on the current state
of the art of FDIR approaches and emerging techniques, such
as model-based methods, to overcome their limitations can be
found in [31]. Surveys focusing on the techniques that have
the potential to leverage current FDIR designs and make them
more autonomous can be found in [32, 33].

In the following paragraphs, a selection of FDIR techniques
from the domain of artificial intelligence as well as the FDIR
design of ESA’s Herschel and Planck space telescopes are
discussed.

In [34], an approach for fault detection and isolation (clas-
sification) using a combination of PCA, binary and multi-
class SVMs is presented. The process of detection and
classification is depicted in Figure 6.

Figure 6. PCA- and SVM-based Fault Detection and
Isolation [34]

In a first step, the telemetry data is mapped to a lower
dimensional space by PCA. In the next step, the data point
is classified by a binary SVM as representing a nominal or
fault state. In case a fault is detected, the datapoint is passed
to the fault classification performed by a multi-class SVM in
a One-Against-All (OAA) fashion. Both SVMs are trained
using telemetry data that has been manually labeled with its
respective fault state.

Herschel and Planck were two space telescopes jointly de-
veloped and launched to Earth’s L2 point by ESA in 2009.

Planck mapped the cosmic microwave background (CMB)
at microwave and infra-red frequencies. Herschel was ob-
serving in the far infrared and submillimetre wavebands,
mainly focusing on galaxy and star formation regions. Both
telescopes remained operational until 2013. To streamline the
development, Herschel and Planck shared a high-level FDIR
approach based on two different FDIR modes:

• Autonomous Fail Safe (AFS): Events and anomalies are
detected and sent to ground. No on-board reconfiguration
is performed but the system enters a safe mode when de-
tecting serious problems such as unit failures. This safe
mode requires ground assistance for the spacecraft to become
operational again.
• Autonomous Fail Operation (AFO): On unit failure, the
system is allowed to reconfigure autonomously and switch to
redundant units, thus increasing the operational time that can
be used for generating science.

In the initial phases of the Herschel and Planck missions, the
AFS was used to preserve spacecraft safety over operational
time. Once the spacecraft were operational, the FDIR mode
was switched to AFO to increase science gains and reduce
downtime. A complete description of the attitude control
computer’s FDIR approach can be found in [35].

Bayesian Networks (BN) are graphical models for repre-
senting conditional dependencies between variables such as
causes and effects. Efficient algorithms for inference in
these graphs exist and can even be compiled to arithmetic
circuits for fast execution. In FDIR, these nets are commonly
used for deducing the cause or origin of a failure given a
set of observable variables (symptoms). Dynamic Bayesian
Networks (DBN) can also capture probabilistic dependencies
between time slices. For example, this can be exploited for
modeling the aging of components over time.

In [36], DBNs are used to model and counteract failures
in the power generation of a simulated mars rover. Nodes
for different failures of the solar arrays and battery strings
as well as failure scenarios and recovery plans and their
probabilistic dependencies are modeled. Inference on the
DBN can then determine whether the current system state
is nominal, anomalous or failed. If a failure was detected,
the inference can propose a suitable recovery plan. In case
of an anomaly, a preventive recovery plan may be advised.
Apart from analyzing the current system state, the proposed
FDIR mechanism is also capable of executing a prognostic
state estimation than can also trigger preventive recovery. The
process is depicted in Figure 7.

Dynamic Fault Trees (DFT) or rather their inherently non-
deterministic extension (NdDFT) in combination with proba-
bilistic automata can yield another way way of modeling the
system’s recovery strategy in the presence of faults. In [37],
so-called Recovery Automata are synthesized that - when
optimized for a specific Markovian Decision Process (MDP)
- output the optimal recovery strategy from a reliability point
of view. The approach was originally proposed in [38].

Techniques of artificial intelligence can, however, not only
assist in fault handling in the form of FDIR, but can also
play a vital role during spacecraft’s nominal operation, its
scheduling and planning. Examples of (partly) autonomous
operations in practice are given in the next section.
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Figure 7. DBN-based Fault Detection and Isolation [36]

5. AUTONOMOUS OPERATIONS
Especially deep space missions require at least partially
autonomous operations to cope with long communication
delays. A shining example for this problem is Mars descent
that usually takes seven minutes, the so-called ”seven minutes
of terror”. Even with an optimal round-trip time of six
minutes for a signal from Mars to Earth and back, there is
no way this manoeuver could be remotely controlled.

For orbital systems, cost and efficiency tend to be the driving
factors of introducing autonomy. Increasing the time a space-
craft can operate without human intervention greatly reduces
its operational cost. At the same time, autonomous science
data acquisition can optimize the use of available spacecraft
resources (i.e. power, transfer budget, etc.).

The following sections introduces a number of examples of
autonomous operations that are applied in past and current
space missions.

In a survey from 2018 [39], the use of OBCPs as a means
of (simple) closed-loop adaptive control and of Markov
decision processes is evaluated. OBCPs are part of the
ECSS Packet Utilization Standard (PUS) and are defined in
the ECSS-E-ST-70-01C standard [2]. The basic concept -
in contrast to traditional telecommands and the time-based
Mission Timeline (MTL) - is depicted in Figure 8. In contrast
to traditional flight procedures that require a synchronous
spacecraft-ground communication for each step, OBCPs en-
able spacecraft to execute more sophisticated control flows
autonomously after being triggered either from ground or by
specific on-board events. This introduces a lot of flexibility
during mission operations as well as capabilities for on-board
autonomy. Examples of the application of such OBCPs on
board ESA spacecraft are given in [40] for the Herschel and
Planck satellites, in [41] for Rosetta and Venus Express and
in [42] for BepiColombo.

While Rosetta (cf. Figure 9) and Venus Express (cf. Figure
10) shared the same OBCP capabilities, the development of
OBCPs was introduced in very different stages of develop-
ment. Rosetta was relying heavily on OBCPs due to signal
lead times of up to 100 minutes. For Venus Express, however,
OBCPs were only developed after positive experience from

Rosetta was gathered. They facilitated mission operations,
mainly at the beginning and end of each contact. Additional
autonomous FDIR functionality through OBCPs was added
later.

Figure 9. Artist’s impression of Rosetta and its lander
Philae [43]

Figure 10. Artist’s impression of Venus Express [43]

The Herschel and Planck satellites (cf. Figure 11) added
the integration of the system database via XML bridge files
allowing easy generation and handling of telemetry and
telecommands within the OBCPs. The software for the
Spectral and Photometric Imaging Receiver (SPIRE) instru-
ment on board Herschel follows a concept similar to OBCPs
[44]. The system uses tables of command sequences that
are interpreted during runtime by a Virtual Machine (VM).
This allows for easy adaptions and patching of the payload
operations without verification, validation and upload of an
entire software image.

Figure 11. Artist’s impression of the Herschel (left) and
Planck (right) satellites [43]

BepiColombo integrated a two-stage scheduling for so-called
emergency OBCPs whose executing precedes the execution
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Figure 8. Traditional TC- and MTL-based operations vs. OBCPs [41]

of regular OBCPs. This makes the system more reactive in
the presence of mission critical events. An exploded view of
the BepiColombo components is displayed in Figure 12.

Figure 12. Exploded view of the BepiColombo stack. From
top to bottom: Mercury Transfer Module, Mercury Planetary

Orbiter, Sunshield and Interface Structure and Mercury
Magnetospheric Orbiter [43]

For Rosetta, not only the operational concept involved au-
tonomous behaviour, but also the scheduling of science cam-
paigns for the eleven on-board instruments [45, 46]. The
mission is broken down into 16 week long-term plans that
are subsequently refined to four week medium-term plans
and one week short-term plans. Based on the spacecrafts
trajectory, a number of planned observations can be created,
resulting in a rough pointing plan that is systematically
refined down to instrument timelines (command sequences)
and a pointing timeline to follow. By scheduling instrument
activations according to windows of opportunity resulting
from a number of constraints (pointing, altitude, sun angle,
...), a sequence of pointing and slew commands as well as
instrument activations making use of Rosetta’s resources can
be found in roughly 20 minutes.

On Earth Observing-1 (EO-1, cf. Figure 13), three algorith-
mic experiments have been conducted [47]. Two of these deal
with cloud detection using Random Decision Forests (RDFs)

and Bayesian Thresholding (BT), the third provides saliency-
based novelty detection. All algorithms rely on a limited
number of frequency bands from the on-board hyperspectral
imaging data. Using data from previous mission phases,
both cloud detection algorithms were trained to drop useless
images from the telemetry downstream. Both algorithms
reached an accuracy of more than 90% with the RDFs slightly
outperforming BT, which was, however, faster in runtime.
Based on the intensity histogram of a given window within
an image, the novelty detection was able to detect unknown
and anomalous objects such as small lakes and buildings in
remote locations. Images containing anomalies could then be
prioritized for the downlink.

Figure 13. Artist’s impression of the Earth Observing-1
satellite [48]

In [49], the development of an optical navigation system
(Natural Feature Tracking, NFT) for the Origins Spectral
Interpretation Resource Identification Security Regolith Ex-
plorer (OSIRIS-REx, cf. Figure 14) mission to the asteroid
Bennu is described. The subsystem was introduced late in
the development to serve as a backup for the Flash Lidar
navigation during the Touch And Go (TAG) manoeuver for
collecting an asteroid sample. Based on images acquired
during the mission, a catalog of Digital Terrain Maps (DTMs)
is created from which the NFT can render expected images
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including spacecraft and asteroid attitude and sun angle.
Correlating these rendered images to actual pictures taken by
the on-board cameras results in a precise determination of the
spacecrafts position and attidude as well as a prediction of its
future trajectory in the complex gravitational field of Bennu.

Figure 14. Artist’s impression of the OSIRIS-REx
spacecraft [48]

The Intelligent Payload Experiment (IPEX, cf. Figure 15)
cubesat was a technology demonstrator for autonomous oper-
ations and on-board image processing [50]. In addition to the
ground-based scheduling system, that had already been used
for Rosetta (Automated Scheduling and Planning Environ-
ment, ASPEN), for the generation of earth observation data
products, IPEX also features an on-board software compo-
nent called Continuous Activity Scheduler Planner Execution
and Re-planner (CASPER). CASPER takes into account real-
time information and system resources to adapt the uploaded
schedule and also generated observation goals when non were
given by its users. Concerning image processing, IPEX
demonstrates a variety of algorithms on board:

• Random forest classifiers for cloud and planetary disk
detection [50]
• Unsupervised saliency analysis for unknown feature detec-
tion based on differences in spatial intensity [50]
• An SVM classifier for autonomous detection of cryospheric
changes in lake and sea ice [51]
• Superpixel segmentation and spectral unmixing techniques
for endmember detection [52]

Altogether, IPEX autonomously generated 30,000 image
products from 450 images based on user requests and sched-
ules that were refined on board.

Figure 15. The IPEX cubesat [48]

In [53], simple three-layer ANNs are proposed for detection
of impacts on the simulated Didymos system and plumes

around Comet 67P/Churyumov-Gerasimenko. On event de-
tection, the spacecraft could initiate the generation of sci-
ence products autonomously without any commanding from
ground. Due to the rather simplistic models, their weights can
directly be visualized for evaluation of the training process.
Initial results offered an average detection performance of
over 90% for both application scenarios.

The Mobile Asteroid surface SCOuT (MASCOT, cf. Figure
16) was developed by DLR in collaboration with CNES as
a compact lander for JAXA’s Hayabusa2 mission to Near
Earth Asteroid (162173) Ryugu [54]. Due to its limited
battery capacity for only 16 hours of operation and long
signal run times, the surface operations of the lander’s four
instruments had to be executed autonomously without ground
intervention. As part of the on-board software, the MASCOT
Autonomy Manager (MAM) was implemented as a state
machine and corresponding transition logic. The MAM’s task
was to decide whether MASCOT’s attitude after touchdown
or a relocation manoeuver allowed the execution of science
experiments, activate the science instruments according to
their predefined order taking into account system resources
and states and execute a relocation (hopping) manoeuver after
the first landing site had been examined or found infeasible.

Figure 16. Artist’s impression of the MASCOT lander [55]

In ESA’s space astrometry mission Gaia (cf. Figure 17),
which is situated in the Sun-Earth L2, makes a three-
dimensional map of our galaxy containing one billion stars
[56]. Gaia’s on-board software is capable of autonomously
detecting (double) stars, unresolved external galaxies and
asteroids and discriminating them from spurious objects
like cosmic rays or solar protons. This is done using the
spacecraft’s various CCD detectors for object detection and
confirmation through local maxima in the image data and
shape estimation along and across the CCDs’ scan direc-
tion. Furthermore, the ground segment of Gaia is able
to autonomously generate science alerts by comparing new
discoveries or diverging star magnitudes to its existing star
catalogue [57].
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Figure 17. Artist’s impression of the Gaia satellite [43]

The Exobiology on Mars (ExoMars) mission is a two-phase
ESA/Roskosmos project to search for past or present life on
Mars. The first phase, launched in March 2016 and reaching
Mars in October 2016, consisted of the Trace Gas Orbiter
(TGO) and its accompanying lander Schiaparelli that did,
however, not survive the landing due to internal software
problems caused by saturated variables for rotation rates dur-
ing parachute deployment [58]. The second phase, currently
planned to launch in 2020, consists of a Russian-built landing
platform and a European-built rover (cf. Figure 18).

Figure 18. Artist’s impression of the ExoMars rover [43]

For navigation and image retrieval, the ExoMars rover fea-
tures a panning and tilting optical bench with two Wide-
Angle Cameras (WAC) and one High-Resolution Camera
(HRC). In order to assist the odometry on Mars, the rover
has a Visual Data Fusion (VDF) system using a technique
called Simultaneous Localization and Mapping (SLAM)
and already sensed information from a Geographical Image
Database Server (GIDS). This system helps in position deter-
mination as well as object detection and path planning. Both
object detection and path planning use SOMs and are capable
of learning in an online and real-time fashion [59].

6. RELATED WORK
A wide area of application beyond anomaly detection, FDIR,
planning and detection of science opportunities are Guidance,
Navigation and Control (GNC) and Attitude and Orbit Con-
trol (AOC). While an extensive review of these techniques is
beyond the scope of this paper, a corresponding survey can
be found in [60].

Techniques of artificial intelligence are not only applied in
the space domain, but are very famous in other domains as
well, especially when a lot of data is involved. One example
is the analysis of electrocardiography (ECG) data via LSTM
networks [61]. At each timestep t, the current datapoint
is used to predict the next l values. An error vector of
the predictions and the actual values is then compared to a
threshold that is derived from the data and if it is exceeded by
the error, the series is marked anomalous.

A current trend in deep learning is using so-called pretrained
models such as freely available award winning networks such
as the ImageNet Challenge (cf. [62]) and altering them briefly
to the actual application’s requirements. This eliminates
the need for large datasets because it exploits the already-
learned features of the pretrained network and leaves the
engineer with the task of finding a suitable model for the
actual inference. One application of this technique to earth
observation data can be found in [63].

The application of techniques of artificial intelligence often
comes with an increased need for computational power. This
can either be satisfied by dedicated processing hardware as
the neural network processor for DLR’s BIRD satellite (cf.
[64]) or by more powerful all-purpose computers, ideally
tailored to the application. One example of such a scalable
system is the Scalable On-Board Computing for Space Avion-
ics (ScOSA, cf. [65]) project, currently developed at DLR. It
features Reliable Computing Nodes (RCN) for critical system
tasks as well as High-Performance Nodes (HPN) to offer a
larger amount of computational power.

With the depicted techniques of anomaly detection at hand,
another approach developed at DLR is the context-aware
compression of spacecraft housekeeping data. The house-
keeping data of LEO spacecraft usually follows one or more
regular patterns. Given previously gathered data samples,
these patterns or models can be learned by techniques of
artificial intelligence. Using suitable compression techniques
(cf. [66]), the spacecraft’s OBC can the decide in which detail
housekeeping data should be reported to ground based on the
adherence or deviation from the learned models.

An important topic outside the scope of this paper, especially
for the safety-driven space domain, is the task of validating
autonomous (sub-)systems. A survey of this field can be
found in [67].

7. SUMMARY
This survey presents a starting point to understand the con-
cept of artificial intelligence and machine learning, potential,
requirements and limitations with a strong focus on the space
domain.

We have given an introduction to the terminology of artifi-
cial intelligence and machine learning in the space domain.
Building upon this terminology, we introduced important
techniques suitable for the application on board and on
ground in the fields of anomaly detection and FDIR. Finally,
we surveyed recent and upcoming space missions for their ap-
plication of artificial intelligence to show concepts of (partly)
autonomous mission operations.

Future missions have a tendency to rely more and more on
autonomous systems to meet safety and cost requirements
and be as reactive as possible. Techniques of artificial intel-
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ligence and machine learning show the potential to not only
assist in mission operations, planning and scheduling but also
to enable new missions that require immediate action by the
spacecraft without the possibility to shift important decisions
to ground.
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