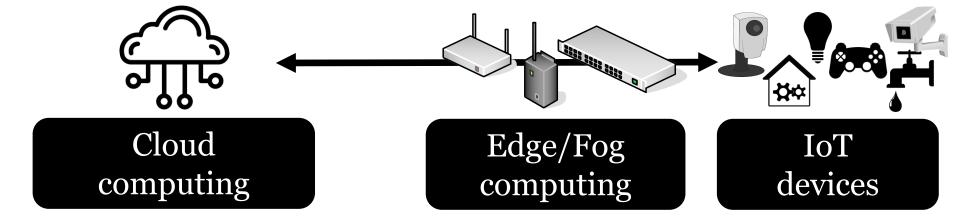
European Workshop on On-Board Data Processing OBDP2019, 25-27/Feb/2019, ESA-ESTEC


Using Heterogeneous Computing on GPU Accelerated

Systems to Advance On-Board Data Processing

Nandinbaatar Tsog*, Mikael Sjödin*, Fredrik Bruhn*^

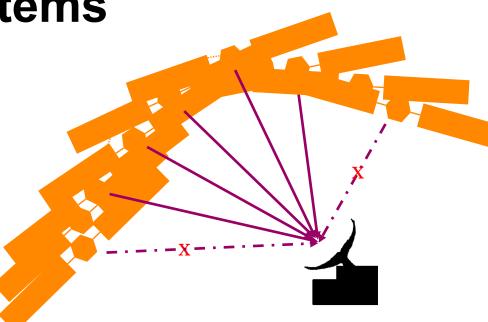
* Mälardalen University, Sweden ^ UNIBAP Publ. AB, Sweden

Dr. Harris Gasparakis - An AMD GPGPU, Computer Vision and Machine Learning technical expert and project manager, USA Dr. Moris Behnam - Associate Professor, Mälardalen University, Sweden Dr. Matthias Becker - Postdoc Researcher, KTH Royal Institute of Technology, Sweden

Real-time properties:

- Intelligent/Advanced On-Board Processing

Heterogeneous architectures & computing



- Heterogeneous Processors in Space
 - Real-time Systems
 - Heterogeneous System Architecture
- Understanding of Heterogeneous Computing
 - Heterogeneous Segment
- In-Orbit Advanced Applications
 - MIOpen, AlexNet with Tensorflow, Hashcat
- Experiments & Results
- Conclusion
- Reference

- Timing constraints
 Deadline
 Worst-Case Scenarios
 - Image processing
 - Video frame rate
 - 60fps
 - 17ms
 - 20fps
 50ms

Heterogeneous Processors

• CPU + FPGA

How to access to the memory

Data consistency!

Communication latency!

- Several techniques / methods
 - Pipeline
 - Pinned Memory
 - Asynchronous Transfers
 - Persistent kernel/thread

Heterogeneous System Architecture (HSA)

• GPU

MÄLARDALEN UNIVERSITY SWEDEN

- Embedded in SoC
- Integrated GPU or Accelerated Processing Unit (APU)

Radiation?

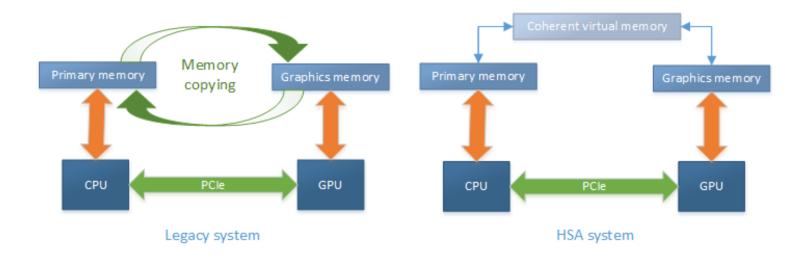
Ref 1. Tsog et al.

• GIMME3

- Invented at Mälardalen University and Unibap
- Heterogeneous System Architecture (HSA) compliant GPU with FPGA
 - HyTI Hyperspectral Thermal Imager (NASA)

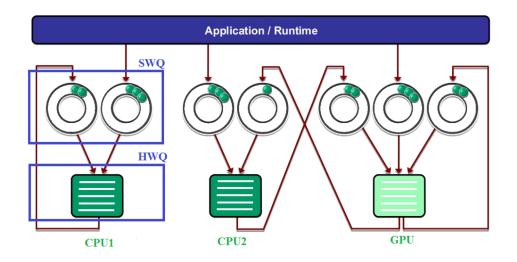
GIMME 4/e22xx families by Unibap

Heterogeneous System Architecture (HSA)


- HSA Foundation Founders are AMD, ARM, Imagination, MediaTek, Qualcomm and Samsung.
- Challenges / Features of HSA
 - Memory handling
 - Queuing
 - Instruction Set Architecture

HSA includes/simplifies the techniques Pinned memory, pipeline etc.

No memory copy in HSA


 No memory copying between memories of Compute Units

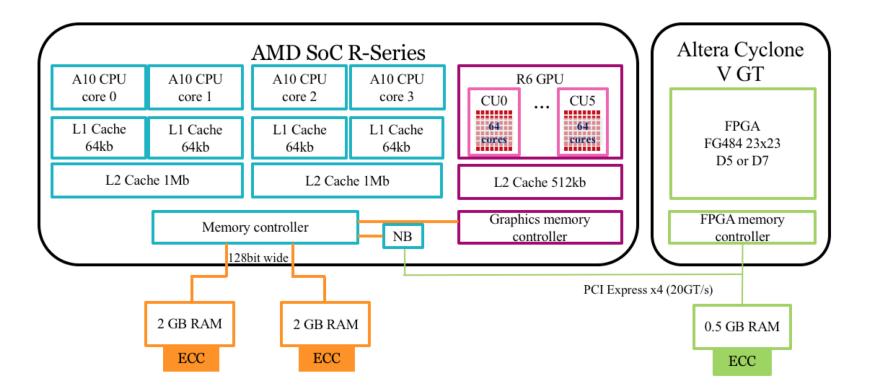
• Hardware queue structure in a HSA system



Instruction Set Architecture MÄLARDALEN UNIVERSITY SWEDEN in HSA

- **Instruction Set Architecture**
 - HSA Intermediate Language (HSAIL)
 - A low-level intermediate representation
 - Vendor- and ISA-independent
 - Generated by high-level compiler
 - Finalizer

- To translate HSAIL code into appropriate machine code (ISA)
- Used for the HW component which does not support HSAIL natively


Advantages of HSA

• Compilers

- HCC based on LLVM/Clang
- GNU 7 or later
- Drivers
 - Open-source and proprietary source drivers
 - ROCm, amdgpu-pro/radeon, Mesa, Catalyst
- Libraries
 - Machine Intelligent = MIOpen
 - OpenVX, OpenCV
 - Caffe, Tensorflow
 - Vulkan

MÄLARDALEN UNIVERSITY SWEDEN

Architecture of GIMME4 Platform

Ref 2. Tsog et al.

Platform

The top side Unibap e2250 prototype module based on the GIMME-4 architecture featuring an AMD R-series SoC, dual DDR4 memory banks with ECC, and Intel Altera Cyclone V FPGA.

Photograph of the bottom side Unibap e2250 prototype module showing on the right the expansion connector with 180 IO for additional features.

- GIMME4 platform with A10-8700p APU
- **8**5g

MÄLARDALEN UNIVERSITY

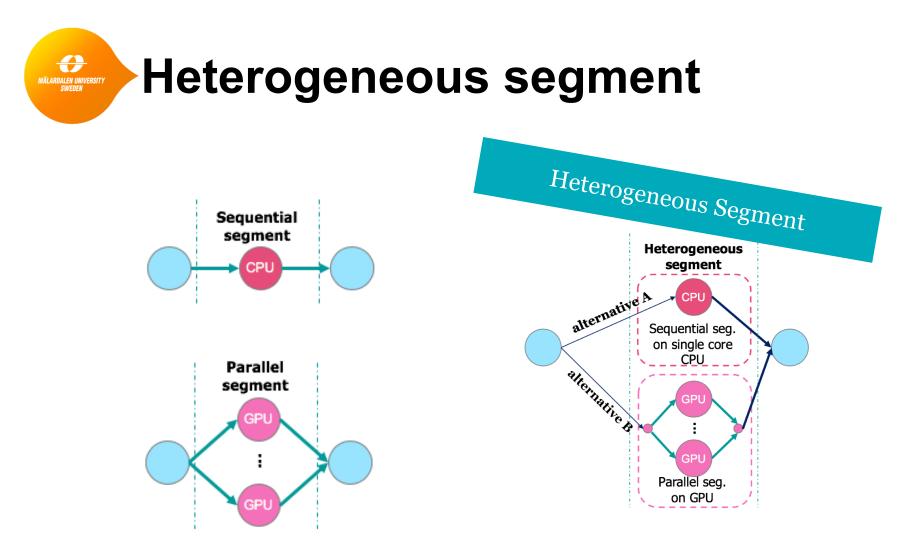
- 82 mm x 110mm
- 12-35Watt (TDP 15Watt)

- A10-8700p APU
- 28nm
- CPU: (4 cores, 1.8GHz)
- GPU: (6/8 CUs, 800MHz 384/512 shaders 533/819 GFLOPS)

- Bus bandwidth
- Between CPU and GPU

At least 100GBps communication between CPU and GPU caches (128bit wide)

Between APU and FPGA PCI Express x4 (20GT/s)



Heterogeneous Computing

- 28nm -> 7nm (AMD) -> 5nm (Apple)
- Parallelism
- Use of

- multiple numbers of processing units
- different processing units

Heterogeneous segment

• OpenMP

MÄLARDALEN UNIVERSITY SWEDEN

- A host device & target devices
- Implicitly on host (target device is not able)
- OpenCL
 - A host processor & accelerators
 - Explicitly using
 - clCreateContextFromType + if condition
- CUDA
 - A host (CPU) & devices (NVIDIA's GPU)
 - Explicitly using 3 qualifiers/space-specifiers
 - ____global___, ___device___, ___host____
- C++AMP
 - A host & accelerators
 - Implicitly

ion A's GPU)

Technology development

Heterogeneous

Parallel seq.

on GPU

In-Orbit Advanced Applications MÄLARDALEN UNIVERSITY

- MIOpen Convolutional Neural Network acceleration
 - An alternative to Nvidia's CuDNN;
 - Supported different layers:
 - Activations, Batch Normalization, CNN, RNN, Local Response Normalization, Pooling, Softmax
- AlexNet with Tensorflow
 - The key role to bring Deep Learning era
- Computer Vision applications
 - Combination of Optical Flow and Harris feature detection alg.

HashCat

 $\mathbf{ }$

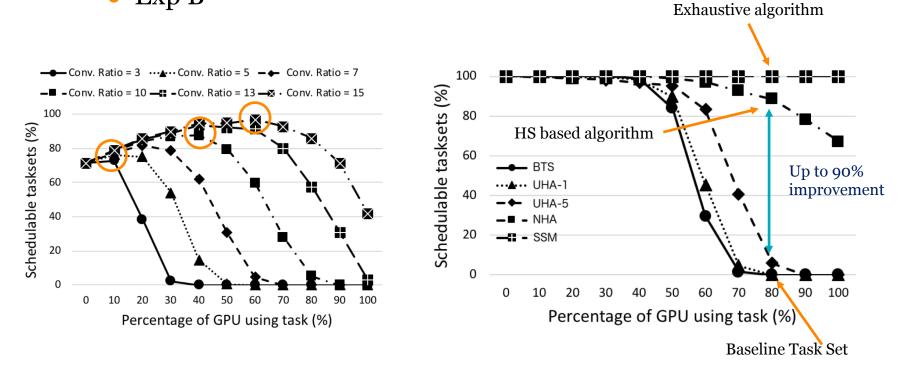
• Exp A

- An investigation of the computational performance and power consumption in CPU and GPU
- Activations (ML1-1), Batch Normalization (ML1-2), CNN (ML1-3), LR Normalization (ML1-4), Pooling (ML1-5) and Combination of Optical Flow and Harris Feature Detection Algorithm (OVX1,2)
- Exp B
 - "Balanced Use" of CPU and GPU using Heterogeneous Segment idea
- Exp C
 - Heterogeneous Computing of AlexNet and Harris Edge Detector Application

• Exp A

Γ	Tasks		Computation time			Energy consumption		
		14585	GPU [ms]	CPU [ms]	Ratio=CPU/GPU	GPU [Joules]	CPU [Joules]	Ratio=CPU/GPU
	ctivations laye		79.33	137.35	1.73	4.41	4.78	1.08
			31.18	93.62	3.00	3.92	4.34	1.11
		ML1-1	1.12	0.66	0.58	1.09	1.14	1.05
		MI.1-2	<u>0 19</u>	22.34	119.67	û.73	0.87	1 19
		ML1-3	12.06	2873.56	238.20	1.63	22.01	13.52
		utional lay	0.57	86.82	153.23	0.75	1.43	1.89
		ML1-5	1.73	29.65	17.16	0.76	0.99	1.31

Speed up ratio up to 238 times (Conv. layer)


GPU consumes less energy than CPU

GPU consumes 13.52 times less energy than CPU (Conv. layer)

Ref 1. Tsog et al.

• Exp B

Ref 3. Tsog et al.

• Exp C

Execution	AlexNet with	TensorFlow	Harris Edge Detector		
time [s]	Mean	WCRT	Mean	WCRT	
Stand Alone	7.875	8.036	1.649	1.87	
Together	7.906	8.104	1.821	1.897	

CPU-GPU communication

Execution	AlexNet with TensorFlow					
time [s]	Mean	WCRT				
Stand Alone	12.355	12.366				
Together	12.348	12.374				
No data transfer loss						

- On-board processing of GPU embedded satellite
 - Consumes up to 13.52 times less energy and computes up to 238 times faster
- Using Heterogeneous Segment improves schedulability of tasksets up to 90%
- Heterogeneous computing performances well on GIMME4 platform

- 1. N. Tsog, M. Behnam, M. Sjödin, and F. Bruhn. Intelligent data processing using in-orbit advanced algorithms on heterogeneous system architecture. In IEEE Aerospace Conference, pages 1–8, March 2018.
- 2. N. Tsog, M. Sjödin, and F. Bruhn. Advancing on-board big data processing using heterogeneous system architecture. In ESA/CNES 4S Symposium 4S, April 2018.
- 3. N. Tsog, M. Becker, F. Bruhn, M. Behnam, and M.Sjödin. Static Allocation of Parallel Tasks to Improve Schedulability in GPU Accelerated Real-Time Systems. In 31st Conference on Real-Time Systems (ECRTS'19). (Submitted)

Thank you!