

Reconfigurable Architectures for On-Board Processing with Adaptive Fault Tolerance using COTS MPSoCs

Arturo Perez*, Alfonso Rodriguez, Andrés Otero*, Eduardo De La Torre*, Yubal Barrios**, Antnio Sánchez**, Sebastián López**

- * Centre for Industrial Electronics, Universidad Politécnica de Madrid
- ** Institue for Applied Microelectronics, Univ. las Palmas de Gran Canaria

Rad-hard versus COTS Devices

RAD750

UC8 Space Use Case: Reconfigurable Video Processor

150nm rad-hard bulk CMOS Up to 200MHz 400 DMIPS at 200MHz

A53 processor:

Up to 1,5 GHz 3450 DMIPS at 1,5GHz Real-Time R5 processor Up to 600 MHz 1470 DMIPS at 600MHz FPGA HW

Zynq Ultrascale+

Reconfigurable MPSoC Devices

Zynq UltraScale+ Hardened Fabrics and Features

- Reliable fabrics:
 - RPU (R5):
 - 2 x Cortex-R5 Processors
 - Native Lockstep 1 core
 - PMU:
 - TMR microblaze
- **Soft-error mitigation** (SEM-IP) embedded features:
 - Frame ECC
 - Error detection/correction
 - CRC

CEIUPM

• Error detection

Reconfigurable Video Processor

Ethernet Interface Gather monitor data Receive Hyperspectral Images Receive TC/TM

Linux

- ECC/CRC scrubber
- Fault Injection

Readback scrubbers – Read Performance (AHS 2018)

Dest. memory PCAP freq. [MHz]	DDR	PMU RAM
187.5	24	2
150	71260 – full mem	2
125	71260 – full mem	3
93.75	71260 – full mem	5
62.5	71260 – full mem	15
46.88	71260 – full mem	30

Table 0: Maximum number of frames that can be read depending on the destination memory and PCAP frequency

CEIUPM

Table 1: Read time with PCAP frequency: 187.5MHz

Mode Frames	R5 no-cache	R5 cache	PMU DDR	PMU RAM
2	65µs	18µs	100.98µs	27.19µs
5	103µs	21µs	227.78µs	41.02µs
15	231µs	49µs	650.54μs	144.89µs
30	414µs	89µs	1.28ms	294.72µs
500	6.27ms	1.35ms	21.12ms	_a
5000	62.17ms	13.36ms	210.98ms	_a
50000	621.21ms	133.48ms	2.11s	_a

a. PMU RAM exceeded

Table 2: Read time with PCAP frequency: 125MHz

Mode	PMU DDR	PMU RAM
Frames		
2	105.08µs	28.06µs
5	235.66µs	42.66µs
15	670.87µs	90.93µs
30	1.32ms	164.3µs
500	21.74ms	_a
5000	217.21ms	_a
50000	2.17s	_a
	^a PMU	RAM exceeded

Table 3: Read time with PCAP frequency: 46.88MHz

6

Comparison Time:

Mode Frames	R5 no cache	R5 cache	PMU DDR	PMU RAM
2	109µs	12µs	223.4µs	166.7µs
5	270µs	23µs	561.4µs	416.23µs
15	808µs	78µs	1.67µs	1.25ms
30	1.57ms	178µs	3.35ms	2.5ms
500	24.64ms	3.46ms	55.7ms	а
5000	254.42ms	34.61ms	553.7ms	а
50000	2.45s	346.47ms	5.53s	а
			a Pi	MU RAM exceeded

Correction Time:

Mode Frames	R5 cache	R5 no-cache	PMU
1	10µs	28µs	14.1µs
10	16µs	48µs	18.99µs
100	91µs	220µs	67.41µs
1000	832µs	1.92ms	544.95µs
10000	8.26ms	18.91ms	5.33ms
50000	41.25ms	94.42ms	26.55ms

Reconfiguration time with PCAP frequency: 187.5MHz

Mode Frames	R5 cache	R5 no-cache	PMU
1	15µs	35µs	16.91µs
10	33µs	77µs	34.67µs
100	238µs	489µs	213.28µs
1000	2.3ms	4.59ms	1.99ms
10000	22.88ms	45.61ms	19.85ms
50000	114.32ms	227.85ms	99.21ms

RECONFIGURATION TIME WITH PCAP FREQUENCY: 46.88MHz

Configuration Aware Readback Scrubber

When mixing Reconfigurable Architectures with scrubbers, there is not a single golden copy to compare with → bitstream composition or multiple file access?
→ Multiple file accesses preferable

Configuration Memory

The ARTICo3 Framework

ARTICo³ is...

- ...a runtime reconfigurable architecture...
- ...for high-performance embedded computing...
- ...with adaptable fault tolerance and energy efficiency
- It has three components:
 - Processing architecture (hardware components)
 - Toolchain (design automation)
 - Runtime library (transparent use from host applications)

RUNTIME ENVIRONMENT

9

POLITÉCNICA

ARCHITECTUR

The ARTICo3 Architecture

CEIUPM

ARICO

Reconfigurable Architecture to enable Smart Management of Performance Energy Consumption Dependability

Hardware Acceleration

ARTICo3: Some Implementations

ARTICo³-Compliant Accelerator Design

Dynamic Solution Space Exploration

REBECCA National funding 2015-2017	Basic ARTICo3 architecture and modelling Extension to multi-FPGA context → Increased acceleration GPU-like model of computation Use case: Smart cities with resilient high-performance sensor nodes
Enable-S3 EU funding (ECSEL) 2016-2019	Hardening the basic architecture Combination with real-time operating systems (RTEMS) Use cases: Hyperspectral image compression (Thales Allenia Space + ULPGC) Camera-based satellite navigation system (GMV)
CERBERO EU (H2020-IC-1) 2017-2019	Toolflow integration Dataflow model of compuutation Combination of fine-grain HW composition, coarse-grain and ARTICo3 Use case: robotic arm controller for a martian rover

Application: CCSDS123 Lossy Extension

- Extends the CCSDS 123.0-B-1 lossless compression algorithm, working in a near-lossless to lossy range*.
- Able to adapt losses according to the user-selected bit rate (rate control).

CEIUPM

- The quantizer is able to calculate the suitable quantization step for the next spectral line taking into account the desirable compression ratio specified by the user.
- A HW/SW partition has been performed according to the tasks complexity, taking advantage of an MPSoC implementation.

*D. Valsesia and E. Magli, "A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 10, pp. 6341-6355, Oct. 2014.

- Hardware-friendly description, simplifying the algorithm complexity and reducing the latency.
- A unique quantization step is applied to each spectral line.
- The calculation is done considering that the variance of the prediction residuals between two adjacent lines are highly correlated.
- A **median** is computed for each band, and after all the medians have been obtained, the quantization step for the next line is computed.

HLS design flow

- CCSDS-123 lossy extension modelled in C and directly transformed into RTL using HLS tools.
- Implementations by automated tools (Xilinx Vivado HLS).
- C reference code from ESA has been adapted for an efficient hardware implementation.
- Advantages of HLS design:
 - Minimal design at RTL level.
 - Untimed simulation for hardware functional verification.
 - Reduced Time-to-Market.

CEIUPM

- Fast exploration of different architectures and parallelization approaches.
- Reduced design time, returning to previous steps without additional costs.

Execution results within ARTICo3

- Totally dependent on the number of hardware accelerators running over the ARTICo³ architecture.
- The use of multiple accelerators is intended to split the hyperspectral images into portions, distributing them among the different accelerators → exploit parallelism.
- Software latency running on an ARM Cortex-A53 \rightarrow around 560 s.
- Maximum speed up x7 when 8 accelerators are instantiated.

NEW! Best results:

- 35 s for 512x512x256
- 7 s for 64x256x256
- 7,5 s for 6 4x512x256
- 6,5 s for 32x256x256
- 9 s for 256x256x256
- 4 s for 128x128x256

Implementing **On-board Processors** for Space applications on **reconfigurable**,

non rad-hard, SRAM-based COTS FPGA (Zynq Ultrascale+).

Jhank you very much! Questions?

Contact: eduardo.delatorre@upm.es

