The PLATO Fine Guidance System

Denis Grießbach

German Aerospace Center

- Institute of Optical Sensor Systems/ Space Instruments
- Actual contributions for space missions: MERTIS, InSight, CHEOPS, PLATO, SOFIA/GREAT, GRACE follow-on, FireBIRD: TET & BIROS, DESIS, EnMAP, KompSat

PLATO

• Detection and Characterization of potentially habitable planets down to Earth-size

PLATO - CCDs

- N-Cams
 - 4×4510×4510 pixel²
 - Pixel: 18 μ m \equiv 15 arcsec
 - FPA: 163×163 mm²
- F-Cams
 - 4×4510×2255 pixel²
 - Frame transfer
 - Used as Fine Guidance
 System (FGS)

FPA-Prototype

FGS Comparison

• Exoplanet missions using the instrument to improve pointing performance (non-exhaustive list)

	COROT - 2006	KEPLER - 2009	TESS – 2018	PLATO - 2026
FGS [arcsec], 2σ	xy: 0.1/ z: 0.45	≈ xy: 0.03/ z: 0.1	< xy: 0.3/ z: 1.3	xy: 0.025/ z: 0.1
FoV [deg], 1 cam	2.7×3.05	4 ×±0.27	24×24	±18.8
iFoV [arcsec]	2.32	1.92	21	15
Pixel size [µm]	13.5	13	15	18
PSF size [pixel]	7×7	6.4×6.4	4×4	2×2
Cadence [Hz]	1.0	9.6	2.0	0.4
∦ stars	2	40	200	30

FGS Comparison

• Exoplanet missions using the instrument to improve pointing performance (non-exhaustive list)

	COROT - 2006	KEPLER - 2009	TESS – 2018	PLATO - 2026
FGS [arcsec], 2σ	xy: 0.1/ z: 0.45	≈ xy: 0.03/ z: 0.1	< xy: 0.3/ z: 1.3	xy: 0.025/ z: 0.1
FoV [deg], 1 cam	2.7×3.05	4 ×±0.27	24×24	±18.8
iFoV [arcsec]	2.32	1.92	21	15
Pixel size [µm]	13.5	13	15	18
PSF size [pixel]	7×7	6.4×6.4	4×4	2×2
Cadence [Hz]	1.0	9.6	2.0	0.4
∦ stars	2	40	200	30

Centroid Algorithm

0.5

0.3

0.2

• State of the art: CoM based on first order image moments

$$x_0, y_0 = \frac{M_{10}}{M_{00}}, \frac{M_{01}}{M_{00}}$$
 with $M_{pq} = \sum_i \sum_j i^p j^q y(i, j)$

• Better: Gaussian PSF model with intensity I_0 , centroid x_0 , y_0 , PSF-width σ , background *D*, and noise ζ

$$y(i,j) = I_0 \int_{i}^{i+1} e^{-\frac{(x-x_0)^2}{2\sigma^2}} dx \int_{j}^{j+1} e^{-\frac{(y-y_0)^2}{2\sigma^2}} dy + D + \zeta$$

• Non-linear optimization problem: $\min_{x_0, y_0, \sigma, D, I_0} \|\widehat{y} - y\|^2$

0 -1 -2

Centroid Noise

Camera Model

- Models the direction represented by each pixel
 - Focal length
 - Geometric distortion
 - radial-symmetric
 - tangential
 - Individual CCD position & rotation

Geometric Calibration

• Residual accuracy: <0.03 pixel @95% confidence

(a) Radial-symmetric model

(b) Radial-symmetric and tangential model

European Workshop on On-Board Data Processing

Lens Distortion

FGS Performance

- 30 guide stars used for attitude estimation
- Noise Equivalent Angle (NEA)
 - xy: <10 mas, z: <40 mas
- Bias instability (14h)
 xy: <5 mas, z: <10 mas
- Leon2-FT processor @80 MHz
- < 300 ms
 - Faster calculation = increased AOCS performance
 - Algorithm could be parallelized

2x2 degree image simulation (PlatoSim)