Ramon Chips

RC64-Based NOGAH Systems
Enabling Software Defined Satellite Payloads

Prof. Ran Ginosar, CEO
ran@ramon-chips.com

Peleg Aviely, David Goldfeld, Moshe Goren, Fredy Lange, Gilad Danin

Ramon Chips is named in memory of Col. Ilan Ramon, Israeli astronaut who died on board the Columbia space shuttle, 1/2/2003

Guglielmo Lulli
Giuseppe Tomasicchio

ThalesAlenia Space
Ramon Chips is a Computer Company

- Rather than a Space company
- But we only do Space computers
- Fully funded by government(s)
- The team comes with experience in computing, communications, semiconductors, software and space
JPEG200 Image Compression

- First product by Ramon Chips
- Custom made
- Plastic QFP better than ceramic
GR712RC dual core Leon3FT
- Gaisler IP cores
- Ramon Chips added RHBD and silicon
- Space Off The Shelf (SOTS, not COTS)
- Extremely successful—used everywhere
- Most recently last week
 BERESHEET Lunar Lander
RC64

- Rad Hard
 - 300 kRad, SEL free, managed SEU
 - Always recovers from SEFI
 - HW + SW FDIR
- High Performance
 - Competitive with FPGAs, GPU, …
- Low Power
 - BEST in MIPS/Watt
- Fast I/O
 - 12x SpFi (5 Gb/s)
 - 6 SpW
 - Flash
- Software Defined
 - C, rather than VHDL / Verilog / CUDA / …
 - Also C-from-Matlab
RC64

- 64 DSP cores
- Shared memory 4 Mbytes in 256 banks
- Hardware scheduler
- Log-net cores ↔ shared memory 100×256
- Cores are NOT inter-connected
- All I/O to shared memory
RC64 Programming Model

- Task Oriented
- Programmer creates
 - Task Dependency Graph
 - Sequential Task Codes
- Task Graph loaded into Scheduler
- Task Codes loaded into Shared Mem
- Scheduler “executes” the Graph
 - Dispatches tasks to cores
- Shared Memory Model
 - Correct By Design
 - Formally Verifiable
RC64

- Almost fully tested
 - Logic clean
 - SEL free
 - Recovers from all SEFI
 - SW control of thermal cycles (plastic BGA)
 - Ramon Chips Own Screen + Qual Flow

- TRL 7

- Available now

- Long shelf life. Long lifetime in Space. Long commitment of support

- Low cost (almost COTS)

- Lower total cost (and shorter schedule) than COTS
RC64 vs other space processors
Performance to Power

![Graph showing performance to power comparison]

- RC256
- RC64
- HPSC
- DAHLIA
- Maestro
- Intel-i7
RC64 answers the Goddard list

- Plus scalability
RC64 is designed for parties → NOGAH systems

Reliability FDIR

OS-based host

GR712RC or GR740

RC64

GR712RC or GR740

RC64
RC64 is designed for parties → NOGAH systems
RC64 is designed for parties → NOGAH systems

- Two Programming Models: Shared Memory Inside
- Message Passing In Between
- OS-based host
- FDIR
- Very Fast Network
Example: 3U VPX Downlink Transmitter (1 Gb/s)
Example: 3U VPX Downlink Transmitter (1 Gb/s)
Same Same but covered
“FOSTER” Ramon Chips—Thales Alenia Space Collaboration

- ESA DSP Benchmarks
- Telecom Applications
 - DBFN
 - Channelization
 - Modems
 - Interference Detection and Mitigation
- More next week here at ESTEC
Benchmarks measure performance and power

- Example: FIR filter
- Showing 5 uSec
- Showing varying power
- 65 GOPS (16 bits)
- 4 Watt
- 16 GOPS / Watt
Preliminary ideas for 6U-220 cards
NOGAH systems: Cards, enclosures, software

These two examples are made by Altech (Los Angeles, USA—www.rugged.com)
Software Systems

Software “Operating System”
- Services
- Library Kernels
- Interfaces
- Drivers
- Run Time Executive “RCEX”

Software Development Tools
- Integrated Environment
- Optimization
- Libraries
- Debugger
- Parallel Task Compiler
- C Compiler

<table>
<thead>
<tr>
<th>Services</th>
<th>Libraries</th>
<th>Network</th>
<th>Fault Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>Input / Output</td>
<td>Parallel Execution</td>
<td>Drivers</td>
</tr>
<tr>
<td>Drivers</td>
<td>Boot</td>
<td>Executive</td>
<td>Fault Tolerance</td>
</tr>
<tr>
<td>Executive</td>
<td>Profiler</td>
<td>Tracer</td>
<td>Manycore Libraries</td>
</tr>
<tr>
<td>Optimization</td>
<td>Hardware Interface</td>
<td>Debugger</td>
<td>Task Compiler</td>
</tr>
<tr>
<td>Interface</td>
<td>Simulator</td>
<td>Verifier</td>
<td></td>
</tr>
<tr>
<td>Parallel</td>
<td>C Compiler</td>
<td>Core Libraries</td>
<td></td>
</tr>
<tr>
<td>Compiler</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Software Applications

- TELECOM
 - Spectrum Analysis
 - Digital Beam Forming
 - Interference mitigation
 - Channelization
 - Transparent switching
 - DVB-S2X & RCS2 modems
 - IP routing
 - SDN
 - Constellation Networking

- COMPUTING
 - Resilient Storage
 - Machine Learning (inference)
 - Cyber Security

- GNSS
 - Ultra-high Precision Receiver
 - Steerable Beam Transmitter

- EOS-OPTIC
 - Pixel processing
 - Time Delay & Integration
 - Detection of Changes
 - Accurate Positioning
 - Selective Reduction
 - Image Compression

- EOS-Hyperspectral Imaging
 - Hyperspectral Imaging Real Time Identification
 - Hyperspectral Image Compression

- EOS-SAR
 - 2D/3D FFT
 - BAQ Compression
 - Object Identification
 - Interferometry
 - Digital Beam Forming
Conclusions

- RC64 is best high-performance, low-power processor for Space
- NOGAH systems excel in Performance, Power, Fault Tolerance, Ease of Programming, Availability, Affordability, Reconfigurability and Scalability
- Advantageous in both Incumbent and New Space
- Effectively no export restrictions
- Web page posts published papers and presentations