On-Board Data Reduction SW in CHEOPS
CHEOPS is ready for launch: 15.10–14.11.2019
Soyuz, together with Cosmo Second Generation 1
Characterizing Exoplanets

- until 1995 we knew 8 planets ...

current figure:

[Image of solar system with planet sizes and numbers]

Exoplanets
Last update: February 24, 2019

<table>
<thead>
<tr>
<th>Exoplanets</th>
<th>CONFIRMED</th>
<th>NASA CANDIDATES</th>
<th>PLANETARY SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,917</td>
<td></td>
<td>3,281</td>
<td>2,918</td>
</tr>
</tbody>
</table>
CHEOPS Primary Science Goal

- observe **KNOWN** transits to measure exoplanet radii to 10% and derive bulk density
- classification of exoplanets
- detection of atmosphere
- properties of gas giants

Rodenbeck et al.

instrument shipping prep. (Uni Bern)
The Spacecraft

- **ESA-S**, 1.5m per side, 280 kg
- **Platform**
 - Guiding < 8"
 - 60 W, S-Band ~150 MB/day (Torrejón)
- **Instrument**
 - consortium led by Uni Bern
 - 60 kg, Telescope D=32 cm, f=2.7m
 - 1k x 1k CCD, 400-1100 nm, 1"/px
 - 2x2 LEON3-based computers
DPU Specs (and Bugs)

- **GR712RC** used @ 25 MHz, both cores and GRFPUs, DSU, 2 GRSPW2 cores, 1553
- 2 SRAM banks, each 32 MiB, 1 waitstate
- 16 GiB FLASH with EDAC
- **HW Bugs ("Anti-Features")**
 - several CPU bugs were solved by bcc updates
 - no read-modify-write access to SRAM2
 - 3 of 7 CPUs had a strange thermal problem on Core2 (the affected ones were proto-parts)
 - Milbus core (Microsemi v2.16) has buggy ping-pong mode
IASW Overview

- ca. 25 person-years for ...
- ~100 ECSS (Sub)Services
- 535 SW modules, 65327 loc
- Category C (B-C)
 - Spec + PA/QA by PnP Software
- OS: bare metal (~11kloc)
- CORDET Framework
 - ECSS Services, PUS packet routing
 - 7 State Machines and 24 SW Procedures
 - 13 FDIR (~4kloc) procedures monitoring 120 param., 5 recov proc.
- Science Algorithms (~20kloc)

nested state machine for detector unit
Key Requirements for Science DP

- Max sust. Science Data input rate up to 3.5 Mibit/s
- Max sust. output 128 kibit/s (Milbus)
- Science TM Budget: 10.5 kibit/s (S-Band, Polar Orbit)
- Centroiding < 1 pixel (we manage < 1/10)
- Telescope temp. control < 1 deg (we manage < 1/20)
Real-time DP SW Architecture

- Core1: “System tasks”
 - 8 Hz IASW cycle
 - state machines and procedures
 - communication, FDIR, Thermal
 - centroiding on input images
 - FLASH access with SAA w/p
 - error log etc...

- Core2: “Science Data Processing”
 - Target Acquisition (Pattern Recognition)
 - Reduction and Compression

- both Cores use the same code image
- both cores are powered down when idle
- producer/consumer access to resources
Data Processing tasks

- images are intentionally defocused to mitigate individual pixel characteristics
- exposure times 0.1s – 60s
- data processing
 - target recognition
 - centroiding
 - reduction and compression
Target Acquisition

- pointing uncertainty on new targets:
 - up to 120px shift (thermoelastic)
 - rotation unknown

- Algorithms
 - Liebe-based angle method
 - magnitude validation

- performance is limited by source extraction
Centroiding (Payload in the loop)

- every science frame at up to 1 Hz is used for centroiding

- Performance trades
 - “age” of centroid information is critical
 - PSF (shape of target star) varies with position and spectral type
 - cosmics need to be filtered
 - no prior knowledge is kept between images

- implemented algorithm
 - intensity weighted centre of gravity with thresholded median filter

[Images of smeared, overlapping, and filtered images]
Science data reduction + compression

- some **re-use** from HERSCHEL/PACS
- **full frames or windows + margin areas** enter the DP chain
- product-specific keys define the steps to take
- schedulability is up to the observer (=SOC)
- limitations are:
 - input cadence vs execution speed
 - output bandwidth over Milbus

example for a science window
Lessons Learned from CHEOPS

- minimize external dependencies
 - on SW that is part of the FSW, SW that generates it, development tools, test environment, Instrument Database, Document Generation, ...

- new qualification testing paradigm
 - UVIE Test Specification Tool

- new document generation workflow
 - based on LaTeX
Future of CHEOPS – and of UVIE

- CHEOPS WAS DONE IN 5 YEARS!
- CHEOPS launch window 15.10.-14.11. 2019
- CHEOPS IASW Sources
 - https://ghe.phaidra.org/space

“I've analysed 36 mission codebases so far during my tenure at ESTEC – and I can honestly say that CHEOPS code is a shining star in terms of static analysis.“

- UVIE is currently working on:
 - IASW for SMILE/SXI, ARIEL-FGS, ATHENA-WFI, SAFARI
 - FPGA compression for PLATO

last SW update Dec. 2018