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ABSTRACT 

 

The new RTEMS version 5 provides full support for 

Symmetric Multiprocessing (SMP) on real-time space 

applications. GMV with its TSP/IMA AIR hypervisor 

virtualizes RTEMS 5 and fully supports RTEMS SMP 

implementation on multi-core On-board Computers. AIR 

I/O component integrates device control into a partitioned 

environment opening a door to optimal performant 

solutions for the application of Remote Terminal Units 

and also in Buses & Communication protocols. 

 

This paper presents AIR hypervisor architecture, its set 

of available application programing interfaces and the 

paravirtualized supported operating system RTEMS. 

Two use cases are depicted exemplifying the advantages 

of AIR with RTEMS SMP on on-board computers with 

LEON4 multi-core processor. 

 

Key words: IMA; TSP; AIR; Hypervisor; Operating 

Systems; I/O; SMP; RTEMS; Multi-Core. 

 

1. INTRODUCTION 

The growth in complexity of software systems 

functionalities associated with more powerful on-board 

computers lead to a complex task by the system 

integrator. This extensive task comprises the 

responsibility to provide functional validation as a single 

component for systems where multiple software 

applications might co-exist on the same computer while 

still respecting every application’s critical class and also 

provide fault detection and containment at software level. 

 

One of the objectives of the Integrates Modular Avionics 

(IMA) concept in aviation was to achieve an integrated 

system architecture that preserves fault containment 

properties while creating a clear separation between 

software modules that share the common hardware. This 

architecture uses Time and Space Partitioning (TSP) to 

share the computing platform between possibly multiple 

cooperating applications. The concept of partition is 

therefore an allocation of resources to an application in 

terms of memory space (spatial partitioning), CPU time 

(temporal partitioning), I/O device access, CPU privilege 

mode and communication via ports. ARINC-653 [1] 

standard defines the software baseline specification for 

application development within an IMA architecture. 

 

The European Space Agency (ESA) has already 

identified the benefits of incorporating software TSP into 

the spacecraft avionics architecture to manage the growth 

of mission functions implemented in the on-board 

software [2]: 

 Reduced integration effort 

 Hardware resource savings 

 Fault containment in an integrated system 

 Mixed Software Criticality (by clearly defining the 

different levels of criticality) 

 

The IMA for Space (IMA-SP) project defines a standard 

IMA platform specific for the space domain [3]. The 

platform does not only provide services on operating 

system level, but includes domain specific services, such 

as Fault Detection, Isolation, and Recovery (FDIR), 

mode control, on-board software maintenance and a 

generic I/O solution. 

 

GMV AIR is a type-1 hypervisor based on the IMA-SP 

paradigm that allows a single host computer to 

simultaneously execute several independent Real Time 

Operating Systems (RTOS) partitions with temporal and 

spacial partitioning by defining a schedule based on the 

partition’s criticality level [4] [5]. AIR fully supports the 

guest OS Real-Time Executive for Multiprocessor 

Systems (RTEMS) [6] versions 4.8i and 5 for SPARC v8 

architecture processors such as LEON2/LEON3/LEON4. 

AIR also supports the ARMv7 instruction set with NEON 

instructions. 

 

2. AIR OVERVIEW 

AIR is an additional software layer between the 

application and hardware that ensures applications can be 

partitioned into a set of isolated systems in both time, 

through an execution schedule, and in space through its 

own memory region and processor cores. All AIR 

versions are open source under GPL v2 license [7]. 

 

The AIR hypervisor architecture is depicted in Figure 1 
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and consists of the following modules: 

 Partition Management Kernel (PMK): It holds the main 

functionality of the hypervisor and implements TSP, it 

corresponds to the TSP kernel of the TSP System 

Executive platform. In turn it can be divided in three 

modules: 

 Core: which holds the core functionality of AIR such 

as partition management, TSP paradigm, multi-core 

handling, syscall implementation and health monitor; 

 Arch: The generic functionality needed for AIR to 

run a processor architecture, currently is supporting 

the SPARC architecture and ARM processor boards 

executing the armv7 instruction set with or without 

NEON support and no virtualization extensions 

 BSP: The specific functionality needed for AIR to 

run a Board Support Package, which currently 

supports the LEON2, LEON3 and LEON4 processor 

boards as well as a dual core cortex A9. 

 Partition Operating System (POS): It holds the RTOS 

being paravirtualized by AIR, it corresponds to the guest 

OS of TSP System Executive Platform; currently the 

module supports RTEMS SMP, Qualified RTEMS 4.8 

Improved, RTEMS 5 and Bare bone execution without a 

RTOS. 

 Libs: This module is composed by a set of libraries 

implementing functions to bridge the user application, 

RTOS and PMK. They correspond to the TSP System 

Executive extensions with the exception of IMASPEX. 

The libraries are: 

 IMASPEX: Implementation of standard ARINC 653 

API enriched by ESA specifications taken in 

IMA-SP and AIR which hide the Core sub module 

API holding the system calls; it corresponds to the 

Time and Space Abstraction Layer of the TSP 

System Executive Platform; 

 LIBAIR: Implementation and interface of system 

calls used by a RTOS trap handler in order to 

paravirtualize the RTOS. Gives RTOS AIR Health 

Monitor support; 

 LIBIOP: Implementation of device drivers based on 

the same device drivers source code present in 

RTEMS; 

 LIBPRINTF: Implementation of the printf 

functionality, useful for debugging and pure 

Embedded RTOS that do not have support to print on 

a console or other device; 

 LIBTEST:  A set of auxiliary functions used to 

execute, integrate and a validation test used to be 

applied in the test and validation campaign of AIR 

and the device drivers. 

 Tools: The tools are implemented in parallel to the 

modules presented before, as it configures and bind the 

previous modules in order to generate the executable. The 

tools are divided in two submodules: 

 Configurator: Configures AIR for a specific 

architecture, Board Support Package (BSP) and 

processor. Generates accordingly a set of makefiles 

for the RTOS and libs modules. It is also used at 

application level to generate the application’s 

makefile; 

 Partition Assembler: Executed at user application 

level, is responsible for aggregating all the built 

partitions into a single executable file, in order for the 

PMK at booting stage to effectively manage and 

deploy the partitions in memory. 

 

2.1. LIBAIR and IMASPEX 

AIR Libs supports the development of applications [5] 

for an AIR partition especially when no guest RTOS is 

used. Table 1 summarizes the available services that 

enable an application to be ARINC based compliant. In 

case of a partition executing a guest OS most of the 

services except partition management, communication 

and health monitor, can be executed by the available 

paravirtualized guest OS native functions. 

 

2.2. LIBIOP 

In a partitioned system, the quantification of time spent 

in I/O tasks is even more critical, since it shall be known 

on whose behalf I/O tasks are performed. The costs for 

these tasks should be booked to the applications that 

actually benefit from it. Robust partitioning demands that 

applications use only those time resources that have been 

reserved for them during the system design phase. I/O 

activities shall, hence, be scheduled for periods when the 

applications that use these specific capabilities are 

actually being executed. Furthermore, safety 

requirements may forbid that some partitions are 

 

Figure 1. AIR Architecture Component Breakdown  



 

interrupted by hardware during their guaranteed 

execution time slices. As a consequence, it must be 

ensured that I/O devices have enough buffering 

capabilities at their disposal to store data during the time 

non-interruptible applications are running [8]. LIBIOP 

was built and respects the characteristics of a partitioned 

system:  

 Is generic and therefore decoupled from the application; 

 Is robust, in the sense that it can be used by more than one 

partition without interference; 

 Routes data to its rightful owner (a given application in a 

given partition); 

 Is quantifiable (i.e. its execution time must be bound and 

measurable);  

 Does not interrupt, disrupt or have any kind of impact in 

the time and space partitioning of the applications. 

 

In an IMA system the hypervisor must have a small 

trusted computing base so it can be easily certified to the 

highest levels of criticality. Including the I/O in the 

hypervisor would increase its size considerably and add 

complexity to otherwise simple software. By integrating 

I/O into a single dedicated system partition it is possible 

to add new functionalities to the platform in a short 

amount of time. No need for kernel reconfiguration or 

reimplementation and the partition can be handled the 

same way an application partition does, strengthening the 

sense of software reuse and building blocks. The clear 

location for drivers and protocols in this separate memory 

space eases board maintenance, where patches can be 

uploaded to this memory area without impacting kernel 

code. Also, having a dedicated LIBIOP partition makes 

hardware interrupts needless since even if a hardware 

interrupt were to be used to signal the arrival of new data, 

there were no means to activate a driver to obtain the data 

given the device driver is only activated according to the 

pre-defined partition schedule. The way to handle I/O is 

thus polling. 

 

Figure 2 exemplifies the I/O partition routing capability 

by handling I/O device data to the correct channel. 

Parallel computation in multi-core processors allows the 

possibility of deploying the LIBIOP in a dedicated core, 

resulting in considerable improvement in terms of data 

throughput and latency. An alternative approach to 

parallelization can be the employment of specific 

operating system features that enable the occupation of 

scheduled unused time. This alternative may provide 

mechanisms to schedule tasks in this otherwise unused 

time. Co-partitions are able to run in the unused time of 

an application execution window, without compromising 

the real time characteristics of the system [9]. Deploying 

the LIBIOP partition as a Co-Partition would allow to 

reduce the latency and improve performance as well. 

 

Currently LIBIOP supports SpaceWire, Ethernet, 

MIL-STD-1553 and CAN bus interfaces. 

 

2.3. AIR CONFIGURATOR 

AIR Configurator is a two step command line interface 

tool that provides system developers the ability to 

auto-generate all the required development environment 

and subsequently to validate and auto-generate all the 

applications dependencies given the high level XML 

system description. 

 

On a first stage, the Configurator interacts with the 

developer in order to establish and create the system 

development environment by selection of the target 

architecture and Board Support Package (BSP). This 

stage generates all the necessary makefiles for building 

the supported RTOS as well as AIR’s PMK and Libs. 

 

Table 1 – Available AIR Services 

Services System Call 

Partition 

Management 

Get Status, Get ID, Set Mode, 

Virtual Core Number, Virtual 

Core ID 

Communication 

(Queuing/ 

Sampling ports) 

Create, Get Status, Send/Write, 

Receive/Read, Get ID 

Time 

Management 

Get elapsed ticks, Get 

microseconds per tick, Get /Set 

time of day  

Cache 

Management 

Flush, Activate, Deactivate, 

Freeze 

Health Monitor Raise, Get Status 

Interrupt 

Handling 

Enable, Disable, Mask Unmask 

IRQ 

FPU Control Enable / Disable FPU 

Scheduling Get/Set Schedule, Get Status  

 

 

Figure 2 AIR I/O communication scheme. 

 



 

Once at application level, the execution Configurator will 

validate the system description XML file while parsing 

its content. All necessary supporting files to interact with 

AIR and all required makefiles for every defined partition 

are auto-generated based on the XML settings. Also, the 

required supporting files for the Partition Assembler are 

auto-generated allowing the auto-execution of this tool at 

the end of the building stage. 

 

3. SUPORTED RTOS 

 

AIR partition configuration supports a RTOS RTEMS 

personality and bare applications that do not require a 

RTOS. AIR supports RTEMS version 5 and a space 

tailored version of RTEMS 4.8 [10] (named 4.8i in AIR). 

 

3.1. RTEMS 

RTEMS is an open source RTOS that supports open 

standard application programming interfaces (API) such 

as POSIX. AIR works with RTEMS paravirtualized, as 

paravirtualization means the process of redirecting to 

specific LIBAIR calls the handling of processor registers, 

the clock control and by adding the memory address 

virtualization. In detail, RTEMS is paravirtualized by 

technically doing the following: 

 RTEMS only accesses virtual core information. Replace 

specific direct processor registers handling with LIBAIR 

handlers that actually manage the virtual core register; 

 Trap table is paravirtualized in RTEMS - RTEMS trap 

table is virtual since the real trap table is handled solely by 

AIR; 

 RTEMS interrupt handler is virtualized by AIR given the 

real handling is only performed by AIR; 

 Manage RTEMS clock interrupt handler in order to 

support the partition time rather than direct timer registers; 

 AIR controls the real interrupts Enable/Disable; 

 AIR manages RTEMS partition handling permission of 

the Floating Point Unit (FPU); 

 Change makefiles to add AIR library support into RTEMS 

 Memory configuration is handled by AIR, for example to 

change the entry point from 0x40000000 to a virtual 

0x41000000. 

 

SMP is supported by RTEMS since version 5. 

 

3.2. SMP 

A SMP system is a tightly coupled multiprocessor system 

with identical processors running independently from 

each other where each processor shares the same memory 

and I/O devices usually connected by buses. A single 

operating system manages each core equally and 

therefore any core can execute any task just as well as 

any other core in the system. This contrasts with an 

Asymmetrical Multiprocessing (AMP) system where 

each core has a specific predetermined task or each core 

has a specific set of peripherals attached. 

 

The SMP operating system may then be configured to try 

to keep all cores busy running application threads, in 

effect dynamically load balancing the system’s work. 

Alternatively, SMP operating systems can also allow the 

assignment of a set of tasks/threads to a subset of 

processor cores to try to keep the subset of cores busy 

with the configured set of tasks. As a result of the 

hardware abstraction and load balancing in the system, 

the SMP operating system simplifies the task of 

developing software to run on multi-core hardware. From 

the programmer’s view, there is only one OS to write an 

application for, which will automatically distribute the 

workload to the configured available cores. An SMP 

operating system therefore may provide the same 

programming semantics as a uniprocessor system. 

 

AIR, by supporting a guest OS with SMP functionalities, 

gives the system developer the ability and flexibility to 

create a system with a heterogeneous set of partitions by 

eventually mixing partitions specificities. An application 

may be divided into a couple of partitions with one subset 

of the application being executed in a multi-core partition 

with SMP functionalities while the remaining application 

subset still being executed independently in a single core 

partition. This possibility not only allows the traditional 

application segmentation for safety reasons but enables 

as well the possibility of having an application segmented 

for safety and multi-core SMP optimization reasons. 

 

4. PERFORMANCE EVALUATION  

To characterize AIR performance, CoreMark [11] 

benchmark for embedded systems was ported to AIR 

with a RTEMS 4.8i partition. Based on Table 2, the 

overhead resulting from the presence of the hypervisor is 

about 1~2%, growing inversely proportional to the 

window size. For partition execution windows smaller 

than 0.001 seconds, the effect in the performance of the 

application starts to be noticeable.  

 

While using CoreMark to characterize the effects of 

parallelization, the performance gains from an SMP 

configuration, using a multi-core AIR partition, is 

depicted in Table 3. The benchmark result was improved 

by 20% when parallelized over a dual-core partition. The 

performance gain does not improve considerably for a 

partition with three cores allocated, since gain increase 

rate decreases with the number of cores used, given the 

shared resource contention. 

 

Since RTEMS version 5 supports SMP, a valid 



 

performance test is yet to be performed in order to 

compare RTEMS SMP multi-core application 

performances versus the same application in an AIR 

multi-core RTEMS SMP partition. 

 

5. USE CASES 

Two real examples are presented, showcasing AIR 

multi-core SMP applicability. 

 

5.1. Multi-core Implementation of the On-Board 

Software Reference Architecture with TSP 

Capability (MORA-TSP) 

 

MORA-TSP objective was to demonstrate the feasibility 

and performance evaluation of an end-to-end process, 

tools and building blocks from application level 

specification using the component based approach of the 

On-Board Software Reference Architecture (OSRA) 

down to representative implementation of the 

combination of OSRA, TSP kernel, SMP operating 

system and multicore. AIR is used as the TSP kernel with 

RTEMS 5 as the guest OS with SMP feature enabled. A 

four core LEON4-N2X board is the target to demonstrate 

several scheduling scenarios of partitions and tasks. The 

scenarios were designed to be generic, but the partition 

names and tasks are derived from EagleEye TSP project. 

Only the IO partition in the TSP system has access to the 

device memory and this memory allocation is bound to 

run on only one core hence, the IO partition is scheduled 

to run in only one core and not allowed to switch cores 

during run-time.  

 

One of this project’s scenarios is presented in Figure 3. 

AIR allows the implementation of more than one 

multi-core partition to run RTEMS SMP configuration 

with in this case implementing Earliest Deadline First 

scheduling of tasks. This exemplifies the multitude of 

scheduling options system designers have while using a 

single multi-core on-board computer. 

  

One additional possibility emerged during the course of 

this project that may be explored in the future. The 

partition’s number of cores is defined in the initial system 

configuration meaning a partition cannot alter its number 

of cores even if there’s an additional available core at 

some point in the schedule. Even if AIR were to support 

this feature, RTEMS would also have to be adapted to be 

aware of a change in the number of available cores after 

booting. 

 

It should be noted that the presented SMP scenario does 

not comply with ARINC 653 specification. ARINC 653 

does not allow more than one partition to be executed at 

the same time, so instead the only possible scenario is a 

single partition where the respective processes can be 

allocated to multiple cores. 

 

5.2. GNSSW-LEON4 

The second use case is being developed under ESA’s 

GNSSW-LEON4 for Space activity where an on-board 

Software Defined Radio GNSS receiver has been 

implemented for the GR-740 On-board-Computer 

harnessing the usage of multi-core through RTEMS SMP 

and AIR. This real time on-board software requires 

predictability in order to ensure the execution of all 

tracking software within a temporal deadline (one 

second).  

 

The application test setup is depicted in Figure 4, where 

the on-board software is feed with a sample data via UDP 

and also transmits its output for performance analysis. 

 

This ongoing case brought the challenge of porting an 

already optimized SMP application into the TSP 

paradigm. The challenge of implementing an already 

optimized software into a new software architecture has 

been the most challenging but also most productive case 

Table 3 - CoreMark in AIR with a SMP Partition  

Number 

Cores 

Execution 

Time (s) 

Iterations 

per second 
CoreMark 

Performance 

Gain 

1 12.280 163 1.086 -1.71% 

2 10.0100 200 1.332 20.58% 

 

 

Figure 3. MORA-TSP SMP scenario. 

 

Table 2 - CoreMark in AIR with different schedule 

window slots 

Window 

Slot (s) 

Execution 

Time (s) 

Iterations 

per second 
CoreMark 

Performance 

Loss 

NO AIR 12.280. 166 1.105 - 

30 12.220 164 1.091 1.23% 

1 12.240 163 1.089 1.38% 

0.5 12.240 163 1.088 1.39% 

0.1 12.280 163 1.086 1.71% 

0.01 12.450 161 1.074 2.77% 

0.001 12.669 157 1.050 4.88% 

 



 

since it has been able to push AIR to its limits. The 

biggest limitation is due to the required data throughput, 

which is inherent to the fact of being compliant to an 

ARINC specification. Nonetheless, it establishes a real 

application performance baseline for AIR to improve.  

 

6. CONCLUSIONS 

AIR hypervisor focus is to deliver an effective and simple 

procedure to build systems based on the IMA-SP 

directives. Being developed by strictly following these 

well-known standards, AIR is a solid solution to assist 

system designers and developers in quickly porting or 

establishing a new TSP system for space, allowing the 

developers to keep their focus on the application while 

enabling another layer of safety and possible 

optimization. 

 

AIR support is in hand with industry increasing 

multi-core on-board computers offer by supporting new 

features offered by the RTOS. MORA-TSP project is an 

example of how AIR is able to support increasingly 

optimized applications and easily bring SMP into the 

TSP paradigm. 

 

AIR IO solution is flexible and efficient for applications 

able to execute some on-board data handling. Project 

GNSSW-LEON4 proves AIR is prepared for the increase 

in computational power of on-board computers and 

multi-core use in the near future. 
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Figure 4. GNSSW simulation setup 
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