Solar Wind Analyzer
The Solar Orbiter milestone
towards on-board intelligent
decision making systems

L. Amoruso, C. Abbattista, V. Fortunato (Planetek Italia),
C. Owen (UCL, University College of London),
R. De Marco, R. Bruno (INAF, Institute for Space Astrophysics
and Planetology),
M. Salatti (ASI, Italian Space Agency)

On-Board Payload Data processing Workshop
ESTEC, Netherlands
25-27 February 2019
Solar Orbiter SWA
Solar Wind Analyser

In-Situ Instrument suite
(one out of the four on-board)
composed of 4 sensors:

- EAS 1 & 2
- PAS
- HIS
and a
- Data Processing Unit
Each sensor collects (and counts) particles carried by the solar wind, sampling a portion of the full sky per

- azimuth angles,
- elevation angles,
- energy levels
On-Board Scientific Data Processing

Moments computation

Meet Science Goals & Meet Telemetry allocation

Solar Wind Flux Measurements

Data Compression
The SWA sensors are operated in different “modes” (designed to meet the science goals), producing a wide variety of data products;

Modes control ‘raw’ telemetry rates defining:
- time resolutions,
- on-board processing and/or
- data compression (i.e. specific data products);

Duty cycle designed to comply to **SWA suite telemetry budget limit (14.5 KiB/s)**.
Computational Load Analysis

Test Conditions

- **Hardware**
 - LEON-2 ASIC board (AT697F)
 - 32KB instruction, 16KB data caches
 - Clock: 100 MHz
 - ~86 Mips & ~23 Mflops
 - SRAM: 8 MB

- **Software**
 - C code implementations
 - RTOS (VxWorks) & ASW

- **Compression Ratio**

\[
CR = \frac{\text{size of the input data stream [bytes]}}{\text{size of the output data stream [bytes]}}
\]

- **Computational Load, estimated by means of**

\[
CPU \ Load = \frac{\text{actual task computing time [ms]}}{\text{task cadence [ms]}} \times 100\%
\]
Data Compression

Overview

- **Analysis**
 - Select data and test cases
 - Entropy evaluation
 - “Discover” any structure in the data…

- Exploit the 3-D structure of the data [Energy, Azimuth, Elevation] groups
 - Correlation in the data
 - “preferential directions” in measurements similarity
Algorithms Definition

Approach

Perform data de-correlation by prediction-based strategies (designed on data structure):

- CSSDS 121
- CSSDS 123

(sharing the same Adaptive Entropy Coder)
Computational Load

Estimated Worst-Case

<table>
<thead>
<tr>
<th>Operational Mode</th>
<th>CCSDS 121</th>
<th>CCSDS 123</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Mode + Trigger EAS + Trigger PAS *</td>
<td>17,2% (=9,6+7,5+0,13)</td>
<td>39,8% (=10,7+28,0+1,1)</td>
</tr>
<tr>
<td>Burst Mode**</td>
<td>17,6% (=14,9+2,7)</td>
<td>68,7% (=56+12,7)</td>
</tr>
</tbody>
</table>

* **NORMAL MODE**: the estimated load includes three components:
 - overall DPU task’s worst case load
 - EAS additional load due to trigger event (assuming an arbitrary task cadence of 1200 sec)
 - PAS additional load due to trigger event (assuming an arbitrary task cadence of 1200 sec)

** **BURST MODE**: the estimated load for a given algorithm includes two components:
 - EAS load (average over a time slot of 1 sec)
 - PAS load (average over time slot of 8 sec)
Data Structure: re-ordering counts

- EAS sensor’s acquisition sequence:
 - From *slower to faster* variation: *Elevation-Energy-Azimuth*, hereafter shortly denoted as **El-En-Az**

- Possible permutations of the acquisition sequence have been considered
Re-ordering counts
CCSDS 121

Energy->Azimuth->Elevation
(Slower) (Faster)

Azimuth->Energy->Elevation
(Slower) (Faster)

Target Compression Ratio: 4.3
Once Elevation as been detected as the direction showing more correlation between measured counts, it is possible to apply a «complex» re-ordering able to discover more (removeable) redundancy by avoiding «jumps» in data continuity.
Moments of a distribution

Given a velocity distribution function \(f \), one can define the \(n \)-th order moment, in the satellite reference frame as
\[
M_n = \int f(v)v^n dv
\]

The moment of order zero is called **number density** and it is defined as:
\[
n = \int f(v)dv
\]

The first order moment is called **number flux density vector**:
\[
nV = \int vf(v)dv
\]
- \(\Rightarrow \) from which one can compute the **flux velocity** by dividing for \(n \).

The second order moment is the **moment flux density tensor**:
\[
\Pi = m \int vv f(v)dv
\]
- \(\Rightarrow \) from which one can compute the **temperature**

Finally, the third order moment is the **energy flux density vector**:
\[
Q = \frac{m}{2} \int v^2 v f(v)dv
\]
Operations Telemetry Corridor (OTC)

An input to instrument planning at *medium-/short-term* planning cycles.

It is a type of *resource profile for planning* since it indicates to the instrument teams the *allowable rates, as a function of the mission timeline*, at which they can send science data to the spacecraft’s SSMM via SpaceWire.
To impose data collection and/or mode use and telemetry generation restrictions on each of the 3 SWA sensors separately in order to keep each of them within the respective allocations rate.

(*) Image Credits: MSSL
From EGSE SW to Continuous Integration in Space

SpacePTS
Payload Test System

The User Interface
- Modern Qt based UI
- Fully dockable widgets
- Multimonitor
- Customizable application layout.

Data Analysis
- Python based data analysis scripts
- Data processing and visualization with spacepy, numpy, scipy, matplotlib.

Features
- TM/TC real-time traffic monitoring
- Archived data browsing
- Session statistics
- HK parameters monitoring
- SCOS2000 IDS explorer
- Data export for off-line analysis
- Python based scripting for automation
- Assisted TC editing
- Source data protocol selection (Serial, SpW, C&C, EDEN, CFDR, etc.)
- Full packet inspection (bytewise/bitwise included)
- Plug-in based architecture
- HW devices control

Application
- Payload Development Kit for Solar Orbiter Solar Wind Analyzer (SWA)
- Scientific Ground Segment SW for SWA
- Payload Development Kit for STRIVING IoD/JoV
- Payload Control Center SW for STRIVING IoD/JoV

I/O Databases
- SCOS2000 MIB compliant
- Postgres, SQLite, MySQL drivers availability

SpacePTS is a Payload Test System fully implementing EGSE business logic for on-board sensors, designed and developed with a special attention to data analysis and scientific users’ needs. Its functionalities also fit to Ground Segment operations.
Conclusions

1. The increased level of *autonomous scientific data assessment* presents a possible solution to classical issues like bandwidth limitations, which can be conflated into the problem of data modeling.

2. Onboard science data analysis will improve the capabilities of existing sensors and enable *transformative new operational modes* to address novel science issues thus relieving constraints on time, bandwidth and power, and by *responding automatically to events on short time scales*.

3. Unprecedented opportunities to *downstream* data from Space to Earth.

4. The technologies/methods designed for the SWA’s on-board science data processing chain, in line with the *ESA OBPDP roadmap*.
Solar Wind Analyzer
The Solar Orbiter milestone towards on-board intelligent decision making systems

fortunato@planetek.it

On-Board Payload Data processing Workshop
ESTEC, Netherlands
25-27 February 2019