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% Opportunity

* Growth in demand for real-time actionable data from space

* Resource-constrained small satellites dominating manifests

* Intensive applications like space video and loT communications
* Need to manage complex networked concept of operations
 Existing operation paradigms are outdated

* Rapidly-evolving consumer-drive autonomy market

— Develop common product components to enable more responsive operations



% What is Responsive Operations?

* Shift in the concept of operations
paradigm

* (Near) real-time actionable
delivery

* Onboard autonomy and decision
making

* Bypassing the human in the loop
* Retasking assets on-the-fly

* Networks of networks: sensing,
processing, delivering

Machine
learning

Adaptive
comms

Blockchain

Emerging
standards

’—a

v Data fusion

Internet of
things
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% Reference Onboard Architecture
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% Framework A

Optimisation
* Responsive tasking
* Fleet management
* Edge computing
* Intelligent FDIR

* Enable service capability
* Space ledger
* Quantum key distribution



% Detect: Forwards Looking Imager
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% Forwards Looking Imager

* FLI looks ahead of satellite to .f
capture upcoming cloud cover /

* Larger angle from nadir: /
* / More time to respond s
« X More distortion and parallax P

* Configurable:

* Angle can be varied to suit
application

* Imager/lens can be swapped

llllllllll




% FLI Applications

* Enables responsive operations

* Target prioritisation & payload
pointing

* Resource management
* Downlink management
* Constellation task reassignment

* Real-time bulletins for
customers




Fmask TextureCam

e d
P y
i ; i maxpool | maxpool
| Heigew. | depth=256 depth=512  depth=512  ¢,0-4006
depth=64 depth=128 3x3conv 3x3 conv 3x3 conv FC1
3x3 conv 3x3 conv conv3_1 convd_1 conv5_1 FC2
convl_1 conv2_1  conv3_2 conv4_2 conv5_2 size=1000
convl_2 conv2_2  conv3_3 conv4_3 convs_3 softmax
conv3_4 conv4_4 conv5_4
b D% %M\
Input GConvolution Pooling Convolution  Pooling  Full Full  Output

Imags

Deep learning

ncreasing applicability across domains




Deep Learning

* Applied transfer learning to

existing CNN
* Trained using:

e open-source dataset (initially)

* in-house dataset (updates)

e Ground-based network for

verification

* Lighter network optimised and

deployed on FPGA SoC
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* Power and processing constraints

* Access to applicable Level O training
data

* Ground reference points
* Incorporating anomalies

* Onboard systems interfacing

 Meeting operational regulations

* Demonstrating mission assurance Pixel Alignment

* Parallax error due to forwards looking ST

Sun Glint



% Enabling Strategies

Target FPGA with known flight
heritage

Tools to enable rapid synthesis from
high level languages to embedded

Evaluation of optimisation pipelines
and approaches

Adapted existing open source libraries
for image processing and deep
learning

Simplification of the convolutional
neural network

Creating a system-in-the-loop test
including distortions and anomalies

FPGA Acceleration of CNNs

Sparsity Pruning |
SVD
= Linear
. Name Interface Devices Design Space Exploration Year El
fpgaConvNet Caffe & Xilinx SoC Global Optimiser May 2016
Torch (Simulated Annealing)
DeepBurning Caffe Xilinx SoC Heuristic Jun 2016
Angel-Eye Caffe Xilinx SoC Heuristic with Analytical Model Jul 2016
ALAMO Caffe Intel SoC & Standalone Heuristic Aug 2016
Haddoc2 Caffe Xilinx & Intel Standalone | Deterministic Sep 2016
DnnWeaver Caffe Xilinx & Intel Custom Search Algorithm Oct 2016
Caffeine Caffe Xilinx Standalone Exhaustive over Roofline Model Nov 2016
AutoCodeGen Proprietary | Xilinx Standalone Heuristic with Analytical Model Dec 2016
FINN Theano Xilinx SoC & Standalone | Heuristic Feb 2017
FP-DNN TensorFlow | Intel Standalone Algorithmic May 2017
Snowflake Torch Xilinx SoC Heuristic May 2017
SysArrayAccel | C Intel Standalone Exhaustive over Analytical Model Jun 2017
FFTCodeGen Proprietary | Intel HARP Roofline and Analytical Models Dec 2017




Test Case:

Cloud Detection

* Image split into tiles

* Cloud detection payload
classifies each segment with
single label:

e Clear (no colour)
e Partly cloudy (yellow)
* Cloudy (red)

* Cloud cover knowledge allows
payloads and EO sensors to
target clear regions




% Test Case: Cloud Detection

* Example parameters:
* Network trained on 1 km2tiles . Forards ooking

e FLI footprint =32.3x16.7 km
=34 x 17 image tiles ~1 km?

* Requirements:

e Capture every ~2 s for
unbroken coverage

* Network must classify 578
images + pre-/post-processing
in<2s

* Areal rate: 270 km?/s
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% Metrics

Platform/model Image rate Accuracy’? Power3
FLI cloud detection 337.7im/s | 97% 0.23 W
network (PL)
FLI cloud detection 1.21im/s | 97% 0.06 W
network (PS)
Cloud detection network | 17.7 im/s 97% 0.75W

on VPU1

'Network of similar depth to FLI network

2Using identical training and test sets

30ver idle

Power

1000

2000 3000 4000

Image classified

5000

6000

—pL

——PS



»

J gl =g IRINE
.".'fc-—-‘("::_ ..': SRS 5 ',...4‘—..5-.‘,* i ‘ltm.ax B




~ * Engineering models of the FLI MVP now
é' available
3 * Delivered to first customers for third
party performance benchmarking and
interface testing
* FPGA-based (2W), but extendable with
Myriad VPUs for additional low-power
neural networks
* Integrates with HIL simulation for
testing
e Reconfigurable for real-time ops
* Tile-size, sensor input, resamples,
field of view, responsive time
 Network updates
* Internal or external camera sources




ESA Work on MSI

* Transfer learning:
* Movidius Neural Compute Stick
e Sentinel-2 MSI imagery

* Preliminary work: 3-band
combinations
* RGB
* Visible + near-infrared channels

* Future plan: Extend to N-band
networks



% MSI Classification

True colour SWIR False colour (urban)
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% Closing Remarks

* Working with partners to develop autonomy framework and payload
computer which will incorporate FLI and other enabling technologies

* FLI is designed to be:
* Fast
* Low power
* Reconfigurable
 Supporting of 3" party sensors
* The first step in CubeSat autonomy
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Thanks

Questions are welcome

<] murray@craftprospect.com

@ www.craftprospect.com

y @craftprospect
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