

a space engineering practice

Integrating Al Techniques Into Future Nanosatellite Onboard Data Processing

Dr Murray Ireland Autonomy Lead, Craft Prospect Ltd OBDP 2019 26th February 2019

- 1. About Craft Prospect
- 2. Responsive Operations
- 3. Forwards Looking Imager (FLI) payload
- 4. ESA project: MSI transfer learning
- 5. Closing Remarks

Craft Prospect Today

Throughout all, investing in the development of systems engineering and processes

- Growth in demand for real-time actionable data from space
- Resource-constrained small satellites dominating manifests
- Intensive applications like space video and IoT communications
- Need to manage complex networked concept of operations
- Existing operation paradigms are outdated
- Rapidly-evolving consumer-drive autonomy market

→ Develop common product components to enable more responsive operations

What is Responsive Operations?

- Shift in the concept of operations paradigm
- (Near) real-time actionable delivery
- Onboard autonomy and decision making
- Bypassing the human in the loop
- Retasking assets on-the-fly
- Networks of networks: sensing, processing, delivering

Framework Needs

Align to/extends existing approaches

Interfaces to existing software/hardware

Allows robust fault detection, isolation and recovery

Reference Onboard Architecture

Reference Onboard Architecture

Framework Applications

- Optimisation
- Responsive tasking
- Fleet management
- Edge computing
- Intelligent FDIR
- Enable service capability
 - Space ledger
 - Quantum key distribution

Detect: Forwards Looking Imager

Forwards Looking Imager

- FLI looks ahead of satellite to capture upcoming cloud cover
- Larger angle from nadir:
 - ✓ More time to respond
 - X More distortion and parallax
- Configurable:
 - Angle can be varied to suit application
 - Imager/lens can be swapped

- Enables responsive operations
- Target prioritisation & payload pointing
- Resource management
- Downlink management
- Constellation task reassignment
- Real-time bulletins for customers

FLI Algorithm

Fmask

TextureCam

Deep learning

Increasing applicability across domains

Deep Learning

- Applied transfer learning to existing CNN
- Trained using:
 - open-source dataset (initially)
 - in-house dataset (updates)
- Ground-based network for verification
- Lighter network optimised and deployed on FPGA SoC

partly_cloudy urban woodland

clear river woodland

cloudy

Implementation Challenges

- Power and processing constraints
- Access to applicable Level 0 training data
- Ground reference points
- Incorporating anomalies
- Onboard systems interfacing
- Meeting operational regulations
- Demonstrating mission assurance
- Parallax error due to forwards looking

Enabling Strategies

- Target FPGA with known flight heritage
- Tools to enable rapid synthesis from high level languages to embedded
- Evaluation of optimisation pipelines and approaches
- Adapted existing open source libraries for image processing and deep learning
- Simplification of the convolutional neural network
- Creating a system-in-the-loop test including distortions and anomalies

- Image split into tiles
- Cloud detection payload classifies each segment with single label:
 - Clear (no colour)
 - Partly cloudy (yellow)
 - Cloudy (red)
- Cloud cover knowledge allows payloads and EO sensors to target clear regions

Test Case: Cloud Detection

- Example parameters:
 - Network trained on 1 km² tiles
 - FLI footprint = $32.3 \times 16.7 \text{ km}$ = $34 \times 17 \text{ image tiles } \sim 1 \text{ km}^2$
- Requirements:
 - Capture every ~2 s for unbroken coverage
 - Network must classify 578 images + pre-/post-processing in < 2 s
 - Areal rate: 270 km²/s

Platform/model	Image rate	Accuracy ²	Power ³
FLI cloud detection network (PL)	337.7 im/s	97%	0.23 W
FLI cloud detection network (PS)	1.21 im/s	97%	0.06 W
Cloud detection network on VPU ¹	17.7 im/s	97%	0.75 W

³Over idle

¹Network of similar depth to FLI network

²Using identical training and test sets

Product

- Engineering models of the FLI MVP now available
- Delivered to first customers for third party performance benchmarking and interface testing
- FPGA-based (2W), but extendable with Myriad VPUs for additional low-power neural networks
- Integrates with HIL simulation for testing
- Reconfigurable for real-time ops
 - Tile-size, sensor input, resamples, field of view, responsive time
 - Network updates
- Internal or external camera sources
- DEMO AVAILABLE AT OBDP

ESA Work on MSI

- Transfer learning:
 - Movidius Neural Compute Stick
 - Sentinel-2 MSI imagery
- Preliminary work: 3-band combinations
 - RGB
 - Visible + near-infrared channels
- Future plan: Extend to N-band networks

MSI Classification

True colour

SWIR

False colour (urban)

True colour

SWIR

False colour (urban)

- Working with partners to develop autonomy framework and payload computer which will incorporate FLI and other enabling technologies
- FLI is designed to be:
 - Fast
 - Low power
 - Reconfigurable
 - Supporting of 3rd party sensors
 - The first step in CubeSat autonomy

Acknowledgements

"Onboard Data Autonomy for Next Generation of EO Nanosatellites"

European Space Agency

Thanks

Questions are welcome

www.craftprospect.com

