

Teledyne e2v

Radiation Tolerant COTS+ Space Microprocessors

De-risking the introduction of ARM based solutions

Mikaël BALL

Project Leader – Space Processors Data Processing Solutions +33 7 77 36 01 75 mikael.ball@teledyne-e2v.com

Thomas GUILLEMAIN

Marketing & Business Development
Data Processing Solutions
+33 6 84 21 15 20
thomas.guillemain@teledyne-e2v.com

T-e2v Space Processors Semiconductor Division

Page 2

<u>High Performance</u>, <u>High Reliability</u> Semiconductor solutions Addressing Critical functions of the complete signal chain in **<u>Demanding Applications</u> Specific Qualified versions** of many standard products Strategic Partnerships (NXP, ...) **Te2v Microprocessors Key Figures 30+ years experience** in up screening processors ~45 products launched during the last 20 years 10s to 100s of kunits shipped per year in Aerospace & Defense 100s of units shipped per year in Space Markets

Teledyne e2v current COTS+ Radiation Tolerant Microprocessors

Teledyne e2v Space Qualification Flows & Radiation Testing

Next steps: de-risking the introduction of ARM based solutions for Space

Teledyne e2v COTS+ Microprocessors Space Offering

February 2019

Commercial Space Dilemna What our customers are saying

"Commercial Space dilemma"

Perform always more complex and powerful data processing into space Ensuring a decent level of radiation tolerance Reduced payload SWaP (Size, Weight & Power) Use devices with significant space heritage **Faster TTM** At an aggressive price if possible

Rationale (non exhaustive)

- Direct on board data processing
- Increased on board data processing requirements
- Higher level of data selection
- Higher accuracy level of data to be transmitted
- Increased Quality Of Service
- Increased autonomy
- Increased observation capabilities
-

Page 6

COTS (Commercial off the shelf) components

Parts designed for **commercial applications** where the **manufacturer or vendor establishes** and **controls** the **specifications** for performance, configuration & reliability with no additional, external requirements.

COTS / COTS+ in Space applications

COTS can be used in Space, but the **key points** will be to ensure they are **reliable for Space**

This is what Teledyne e2v brings & warrants in Space Microprocessors This is what our customers are requesting

Teledyne e2v Space Microprocessors COTS+ Radiation Tolerant - Current Portfolio

Page 7

ORGANIC package solutions

Ruggedized radiation tolerant technology Standard plastic package Device selection and lot validation

- PowerArchitecture®
- Dual Core Microprocessors
- 1.2-1.5 GHz
- 45nm SOI
- ECSS / NASA Grades Qualification

CERAMIC Non-Hermetic FlipChip

Ruggedized radiation tolerant technology Advanced packaging on ceramic Standardized quality grade

- PowerArchitecture®
- Single Core Microprocessors
- 1.2 GHz
- 90nm SOI
- QML-Y Qualification

Teledyne e2v Space Processors Where to find us?

P2020

Page 8

PC8548

Teledyne e2v Space Qualification Flow

February 2019

Organic Package Solutions ECSS / NASA Qualification Flow Purpose

Page 10

Remove infant failures

Minimize risks of corner lots & corner parts

Assess the quality of the process

ECSS / NASA Qualification Flow What Teledyne e2v puts in place

Page 11

Remove infant failures

Burn In

Minimize risks of corner lots & corner parts

Single Lot Date Code

100% Inspection

Assess the quality of the process

DPA
Destructive Physical Analysis

ECSS / NASA Qualification Flow What we have observed

Page 12

We have observed rejected parts after 120 hours of Burn In!

> We have observed large variants from lot to lot!

C-SAM Inspections

Example

Page 13

Worst case (FM lot)

Defect area: ~20%

Distributed small defects

Best case (FM lot)

Defect area: ~3%

Few small defect near die center

Standard case (prototype lot)

Defect area: ~6.9%

Few larger defects on die edges

C-SAM: Confocal Scanning Acoustic Microscopy

ECSS / NASA Qualification Flow High Level

Space Up Screening

Lot by Lot Qualification

External visual & serialization Temperature cycling X-Ray

- 4. C-SAM inspection
- 5. Initial electrical meas. (pre-burn-in)
- 6. Engineering review
- 7. Static burn-in test @ 125°C (or max. temperature)
- 8. Post static burn in electrical meas. @ 25°C
- 9. Dynamic burn-in test @ 125°C (or max. temperature)
- 10. Post Dynamic burn in electrical meas. @ 25°C
- 11. Defective percentage calculation
- 12. Extreme temperature range electrical tests
- 13. Physical dimension controls
- 14. External visual
- 15. Packing & CoC

1. Baseline C-SAM	Parts in Subgroup 1 only
2. Preconditioning	Moisture soak
	SMT devices Reflow simulation
	Through hole devices, Resistance to soldering temperature
3. Electrical measurements	Per device specification
4. Life testing Subgroup 1	HTOL, 125°C
	Electrical measurement
5. Temperature cycling Subgroup 1	Temperature cycling
	Electrical measurement
	C-SAM
6. Highly accelerated stress test (HAST) - Subgroup 2	Biased HAST
	Unbiased HAST

DPA

(Destructive Physical Analysis)

Targets

- Integrity of the package (cracks)
- Quality of assembly (Void issues)
- Defects in the silicon die (cracks)

Ceramic Non-Hermetic FlipChip Purposes of QML-Y Qualification

Page 15

Remove infant failures

Minimize risks of corner lots & corner parts

Additional Quality & Robustness level for **Space**

Assess the manufactured die quality

Teledyne e2v QML-Y Space FLow High Level

Page 16

Screening

1. Wafer lot Acceptance	
2. Wafer sawing	
3. Die Visual selection	
4. Cust. or Teledyne e2v intern. inspection	
5. Die attach	
6. Die shear	
7. Underfill dispense & cure	
8. SMD attach	
9. SMD visual inspection	
10. Substrate serialization	
11. Underfill CSAM	
12. Solder ball attach	
13. Precap	
14. Heat sink attach	
15. Temperature cycling	
16. PIND Test	
17. Marking & serialization	

18. SMD X-Ray
19. Heat sink CSAM
20. Visual inspection
21. Initial (pre-burn-in) electrical meas.
22. Engineering review
23. Dynamic Burn-In test
24. Post dynamic BI electrical meas. @ 25°C
25. Static burn-in test
26. Post Static BI electrical meas. @ 25°C
27. Calculate percent defective
28. Extreme temperature range electrical test
29. Column attach (if applicable)
30. Physical dimension control
31. External visual
32. Post column attach elec. test (if applicable)
33. Customer or Teledyne e2v final inspection
34. Packing & CoC

QCI

Group A
Group B
Group C
Group D1
Group D2
Group D3
Group D4
Group D5
Group D8
Group D9

<u>Initial</u> <u>Qualification</u>

Group C

Solderability

Die shear

Resistance to solvents

SMD shear test

Ball shear

Column pull test

MSL3 + temperature

cycling + CSAM

MSL3 + THB + CSAM

MSL3 + Mech. Shocks & vibrations + CSAM

Qualification Flow Poster

https://www.e2v.com/content/uploads/2018/07/Space Flows Comparison Chart TE2VSFCC V1.pdf

Page 17

Poster detailing the qualification flow and QCI implemented by Teledyne e2v following the below standards and guidelines:

Order a free printed poster from the link below or contact your local sales. https://www.e2v.com/products/semiconductors/

Radiation Testing Key Highlights

Teledyne e2v Space Microprocessors are all tested in Radiation

Radiation Testing & Mitigation are mandatory

T-e2v Space Processors Radiation Information

Page 19

ORGANIC package solutions

Ruggedized radiation tolerant technology Standard plastic package Device selection and lot validation

P2020

- SEU^{*} 53 LET
- **SEL** No LU at 63 LET
- 100 krad (Si)

Source: NASA JPL, Space Micro

P5020

Commercial Space Grade by Te2v

- SEU^{*} 14 LFT
- **SEL** No LU expected (Tested until 14 LET)
- TID On Customer request

Source: NASA JPL

CERAMIC Non-Hermetic FlipChip

Ruggedized radiation tolerant technology Advanced packaging on ceramic Standardized quality grade

PC7448

- SEU^{*} 62 LET
- No LU till 62 LET
- 100 krad (Si) TID

Source: EADS Nucletudes

PC8548

QML-Y Microprocessors

- SEU^{*} 86 LET
- SEL No LU till 86 LET
- 100krad (Si)

Source: Teledyne e2v

SEU*: Data available up to xx LET

Teledyne e2v New Space COTS Products Introduction

February 2019

What's next @ Teledyne e2v New Product Introductions

What challenges for New Space Microprocessors?

Perform more complex and powerful data processing in space

Reduced payload SWaP (Size, Weight & Power)

Good Level of radiation tolerance

Significant space heritage

Teledyne e2v Space Compute Intensive solutions will follow our Space Qualification Flow

- Heavy Space Qualification
- Radiation Testing & Mitigation

What's next @ Teledyne e2v New Product Introductions

LS1046-Space

Performances, Ecosystem & Optimized Power

Quad 64-bit Arm® Cortex®-A72 cores

Qormino[®] QLS1046-Space

<u>Performances, Ecosystem</u> <u>Optimized Power,</u> <u>Modularity, Faster TTM</u>

Quad 64-bit Arm® Cortex®-A72 cores
4GB DDR4 memory (72 bits, incl. 8 bits ECC)
Obsolecence Program

What's next @ Teledyne e2v New Product Introductions

LS1046-Space

Preliminary Radiation Results

LS1046: Q3 2019

Qormino[®] QLS1046-Space

Preliminary Radiation Results

4GB DDR4 Memory : Q3 2019

Qormino Solution : H1 2019

Teledyne e2v Space Microprocessors COTS+ Radiation Tolerant Portfolio

Page 24

ORGANIC package solutions

Ruggedized radiation tolerant technology Standard plastic package Device selection and lot validation

CERAMIC Non-Hermetic FlipChip

Ruggedized radiation tolerant technology Advanced packaging on ceramic Standardized quality grade

TBD

Teledyne e2v Space Processors Conclusions

- Supplier of Advanced & Powerful Space Microprocessors
 - GHz+ class processors for Compute intensive applications
 - Complementing Worldwide Space Offering

- Space Microprocessor Portolio with Flight Heritage
 - Existing, mature, proven COTS H/W platforms & Strongest S/W ecosystem in Avionics & Space

Mastering Radiation Tolerant Space Qualification Flows

De-Risking the Introducing of ARM Cortex A72 based Solutions