

Aerospace & Defense OBDP 2019 From COTS to Rad-Hard by Design ARM System-on-Chips

• Microchip A&D

Scalable ARM SoC

• Other Products update

• Microchip A&D

Scalable ARM SoC

• Other Products update

Extensive Combined Portfolio Across End Markets

Providing Total System Solutions

Long product life times – customer driven obsolesence

Aerospace & Defense Product line (Microchip)

Committed to High Reliability and Long Term Supply

- Delivering Aerospace ICs for more than 30 years
- Strong Flight Heritage in Space & Avionics applications
- Leverage from Automotive solutions for "New Space" challenges : Volumes, Costs and Time To Market

Major Products Focus

- ASICs
- Processors & Microcontrollers
- Communication Interfaces and Memories

Internal Qualified Supply Chain

- DLA / ESCC : Wafer lot to Qualified parts (France)
- DLA : Assembly line (Thailand)

• Long term cooperation with European agencies:

• ESA, CNES, DGA, DLR....

• Microchip A&D

• Scalable ARM SoC

• Other Products update

Use of COTS in Space

 Easy access and costs effectives (volume) AECQ100 Automotive qualified parts Reliability linked to high volumes & high nb of users Wide access to State of art technologies & architectures
Advantages - Reliability linked to high volumes & high nb of users
 Wide access to State of art technologies & architectures
 Access to free ecosystem and benefit from community
 No traceability, No SLDC, High silicon lots discrepancy
 Limited access to qualification & supply chain datas PPAP only for "specific" auto customers / volumes
Drawbacks • Products turnover, versioning & obsolescence (EOL)
 Weak or Unknown radiations performances. Not always lucky.
Product knowledge & costs for radiations testing/screening
No FM support from silicon provider, no guarantee & RMA

Scalable Solutions for Aerospace

RHBD and RT devices – quality levels

(*) compliance = Qualification testing, screening testing, and TCI/QCI inspections meet MIL-PRF 38535 or ESCC9000 requirements

ARM Cortex-M7 Architecture

SoC Architecture

SAMV71Q21 ARM Cortex-M7

Radiations performances

SAMRH71 Status

- N2 final ES now available
- 100Mhz & Spacewire 200Mbit/s confirmed, non reg. ongoing
- 1st Radiations Results confirm Rad Hard expected level
 - SEU LET >20Mev
 - SEL immune, TID to come
- Benchmark results confirm SoC architecture benefits
- Customer engagement Q119 w
 full ecosystem HW & SW

	AT697F	LEON3 FT	SAMRH71
Dhrystone (DMIPs/MHz)	0.86	1.38	>2.14
CoreMark (Coremark/MHz)		1.8	>5

=> AT697F/ SAMRH71 ~9mW/DMIPs

SAMRH71

End User Measurements Benchmark

<u>Targeted application</u>: Geostationary orbit application

Customer Algorithms used:

- Algo 1: Basic correlation algorithm on a small pixel matrix 21x21
- Algo 2: Advanced correlation algorithm on a large pixel matrix 512x128

Execution time of customer algorithms running @ 48 MHz	Algo 1	Algo 2
LEON3-FT (UT699)	4,3 ms	2600 ms
Cortex-M7 (SAMRH71)	1,4 ms	548 ms

SAMRH71 is 3 to 5 time more performant

ARM Cortex M7 SoC Benefits from same HW/SW ecosystem

 Xplained board

 Ordering Code: ATSAMV71-XULT

 SW Tools suite

 Image: Code of the second s

Atmel SAM-ICE Emulator Ordering Code: AT91SAM-ICE

Atmel ICE programmer and debugger Ordering code P/N: ATATMEL-ICE Ready to SW use example projects > demo with detailed documentation > samv71 softpack 1.5 for astudio > exist for other software environment (IAR, EWARM, KEIL, XULT GNU)

Already ported OS for M7 SoC (V71)

On going BSP projects : RTEMS, Xstratum

• Microchip A&D

• Scalable ARM SoC

• Other Products update

RTG4 Availability and Qualification Schedule

- QML class Q and V qualification: <u>Completed!</u>
 - RTG4 can be ordered to DLA SMD part number
 - DLA SMD part numbers on Microsemi web site
- RT4G150 PROTO FPGAs: Now
- RT4G150 development kit: Now
- CG1657 B, E, and V-flow flight units: Available to lead time now
- CG1657 daisy chain packages: Now
- CQ352 B-flow flight units: mid 2019
- CQ352 engineering models: Available to lead time now

RTG4 Low Power Grade

- Low power grade (-L) for RTG4 standard speed (-STD) available NOW
 - 25% quiescent supply current reduction: from 4.1 A to 3.1 A at 125 °C
 - RT4G150L device setting available in Libero SoC v12.0 and power calculator
 - RTG4 continues to be best in class

RISC-V for **RTG4**

• Free and open Instruction Set Architecture (ISA)

- 32-bit instructions, optional 16-bit compressed instructions
- 32-bit, 64-bit, and 128-bit address-space options
- Quad floating point, virtualization, many cores, heterogeneous computing

• RISC-V software tools

- GNU GCC, binutils, newlib stdc library, gdb JTAG/OpenPCD debug
- LLVM/Clang
- Linux and Windows dev environment
- Verification Suite

RTG4 support

- Soft RISC-V IP is free of charge
- Preliminary IP is running at 70 MHz in RT4G150 "-1"
- Sample RISC-V project for RTG4 dev kit available now on <u>GitHub website</u>
- For details, refer to <u>RISC-V website</u>

A Comprehensive Space Portfolio

Radiation-Tolerant FPGAs	High Performance, High Density, Low Power TID up to 300 Krad, SEL Immune RTG4 FPGAs up to 300 MHz and 150K LE RTProASIC3, RTAX and RTSX-SU QML Qualified
Rad-Hard Mixed Signal Integrated Circuits	Telemetry and Motor Control Space System Managers High Side Drivers Regulators and PWMs Extensive Custom IC Capability
Space Qualified Oscillators	Ovenized Quartz Oscillators Hybrid Voltage Controlled and Temperature Compensated Crystal Oscillators Cesium Clocks
Rad-Hard Power Solutions	Rad-hard JANS Diodes, Bi-Polar Small Signal Transistors, and MOSFETs Rad-hard Isolated DC-DC Converter Modules Custom Power Supplies 2 W to > 5 KW Point of Load Hybrid Solutions Electromechanical Relays
Space Screening capability on RF Products	Surface Acoustic Wave (SAW) F Packaged and Chip Si Diodes Si Bipolar Transistors CaAs pHEMT MMICS

Sub-QML: Bridging the Gap Between QML and COTS

a **MICROCHIP** company

THANK YOU!

