Modular Payload Computer Concept applied to on-orbit space debris detection
HJ Herpel, et.al.

OBC-SA On-Orbit Processing of Reflected GNSS Signals for Maritime Target Detection
A. Helm, et. al
Modular Payload Computer Concept applied to on-orbit space debris detection
HJ Herpel, et. al

OBC-SA On-Orbit Processing of Reflected GNSS Signals for Maritime Target Detection
A. Helm, et. al

Requirements
Design space exploration
Solution
Requirements
Design space exploration
Solution
Achim

Modular Payload Computer Concept applied to on-orbit space debris detection
HJ Herpel, et. al

OBC-SA On-Orbit Processing of Reflected GNSS Signals for Maritime Target Detection
A. Helm, et. al

Juergen

Requirements

Design space
exploration

Solution

Requirements
Use Case 1: Space Debris Detection

- **Functional blocks**
 - Camera

- **Communication Module (COMM)**
- **Processing Module (CPM)**
- **Storage Module (SBMM)**
- **Downlink Module (DLM)**
- **Power Supply (DC/DC)**

- **Image size**: 2k x 2k x 14bit
- **Memory req.**: 60 MBit
- **Frames per second**: 0.67 Hz
- **Data rate**: 43 Mbit/s
- **Processing time**: 1.5 sec (Segmentation, ..)

- **Matlab Model**: 12sec

Use Case 2: Maritim Target Detect.

- **Functional blocks**
 - Antenna Array
 - RF Frontend
 - GNSS Receiver (GNSS)

- **Communication Module (COMM)**
- **Processing Module (CPM)**
- **Storage Module (SBMM)**
- **Downlink Module (DLM)**
- **Power Supply (DC/DC)**

- **Image size**: 64 x 256 x 16bit * 12
- **Memory req.**: 6 Mbit * n (n = 1 ...600)
- **Frames per sec.**: 10Hz
- **Data rate**: 60 Mbit/s
- **Processing time**: < 10sec

- **Matlab Model**: TBD sec

Common functional blocks
Design space exploration

<table>
<thead>
<tr>
<th>HW Architecture</th>
<th>Dedicated Box</th>
<th>Modular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>--</td>
<td>SpaceVPX cPCI SerialSpace TCA</td>
</tr>
<tr>
<td>Implementation</td>
<td>Software</td>
<td>Mixed Hardware</td>
</tr>
<tr>
<td>Proc. Unit.</td>
<td>CPU MC GPU</td>
<td>Soc FPGA ASIC</td>
</tr>
<tr>
<td>Communication</td>
<td>Dedicated Serial Links</td>
<td>SpW SpF Ethernet</td>
</tr>
<tr>
<td>In orbit algo. Replacement</td>
<td>Memory patch</td>
<td>Time and Space Separation</td>
</tr>
<tr>
<td>OS Aspects</td>
<td>RTOS</td>
<td>Separation Kernel</td>
</tr>
<tr>
<td>OS</td>
<td>RTEMS VxWorks</td>
<td>VxWorks653 PikeOS xTratum AIR</td>
</tr>
<tr>
<td>SW Architecture</td>
<td>Single process</td>
<td>App oriented Learning</td>
</tr>
</tbody>
</table>

Criteria:
- Optimized wrt. techn. solution
- Reuse
- Risk reduction
- Availability
- Experience/ Background

Use Case 1: Space Debris Detection

Use Case 2: Maritime Target. Detect.

Reuse
Design space exploration

<table>
<thead>
<tr>
<th>HW Architecture</th>
<th>Dedicated Box</th>
<th>Modular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>--</td>
<td>SpaceVPX</td>
</tr>
<tr>
<td>Implementation</td>
<td>Software</td>
<td>Mixed</td>
</tr>
<tr>
<td>Proc. Unit.</td>
<td>CPU</td>
<td>MC</td>
</tr>
<tr>
<td>Communication</td>
<td>Dedicated Serial Links</td>
<td>SpW</td>
</tr>
<tr>
<td>In orbit algo. Replacement</td>
<td>Memory patch</td>
<td>Time and Space Separation</td>
</tr>
<tr>
<td>OS Aspects</td>
<td>RTOS</td>
<td>Separation Kernel</td>
</tr>
<tr>
<td>OS</td>
<td>RTEMS</td>
<td>VxWorks</td>
</tr>
<tr>
<td>SW Architecture</td>
<td>Single process</td>
<td>App oriented</td>
</tr>
</tbody>
</table>

Criteria:
- **Cost**
- **Scalability / Modularity**
- **Flexibility**
- **Commonality with COTS**
- **Availability**
- **Experience / Background**

Use Case 2: Maritime Target Detect.

Compact PCI Serial Space

Component Library

Reuse
Challenges

Use Case 1: Space Debris Detection

From **12 sec** to **1.5 sec**, i.e. speedup of 10

Amdahl's Law

20 cores!
From Serial to parallel code ...

Use Case 1: Space Debris Detection

- **12 sec**
- **10 sec**
- **5 sec**
- **1.5 sec**

- Matlab Model
 - Generate C Code (emmtrix Code Gen. (eCG))
 - "Serial" Code
 - Optimizing Serial Code
 - Optimized "Serial" Code
 - Parallelise Code (emmtrix Parallel Studio (ePS))
 - Optimized "Serial" Code

- **Parallel Schedule**
- **Hierarchical Task Graph**
Test Setup

- **Camera Simulator**
 - Source image

- **FPGA Board**
 - On-Board Data Processing Unit

- **P4080 Board**

- **Ground Station Simulator**
 - Processed data
Modular Payload Data Processing Unit:
- cPCI Serial Space compliant
- Up to 5 slots
- 5 Kg
- Input voltage: 28 VDC
- 20 – 35 W

Dr. Achim Helm
Airbus Defence and Space GmbH
Claude-Dornier-Str.
88090 Immenstaad
Germany
Phone +49 7545 8 3092
Email: achim.helm@airbus.com

Questions?

Hans Juergen Herpel
Airbus Defence and Space GmbH
Claude-Dornier-Str.
88090 Immenstaad
Germany
Phone +49 7545 8 2482
Email: hans-juergen.herpel@airbus.com

Thanks for your attention ...
P4080 HP-CPM

cPCI Serial Space® compliant High Performance Core Processing Module

- Space-qualifyable single board computer in 3U form factor, CPCI S.1
- CPU: P4080 (NXP, 8x e500mc), 60 GIPS, 12 GFLOPS
- Memory: 2 x 4GB DDR3, EDAC
- Survival Module RT ProASIC®3 (Microsemi) RadHard
- Communication: 2x Gb Ethernet, 2x SpaceWire, 2x PCIe x2, 2x CAN
- Operating System: PikeOS, Linux

FPGA Board

cPCI Serial Space® compliant Rad Hard FPGA board

- Space-qualifyable FPGA board in 3U form factor, CPCI S.1
- Radiation-hard RTG4 FPGA
- Communication: 8x Gb Ethernet, 10x SpaceWire, CAN, PC, SPI
- 8W power loss, 450 g