

Data Reduction and Compression Session

ESA UNCLASSIFIED - For Official Use

Data Reduction and Compression Session

Introduction to CCSDS compression standards and implementations offered by ESA

Speakers: Lucana Santos Falcon (ESA), Roberto Camarero (ESA)

Using CCSDS image compression standard for SAR raw data compression in the H2020 EO-ALERT Project Speaker: Enrico Magli (Politecnico di Torino)

Preliminary On-board Image Processing Solution for the H2020 EO-ALERT Project

Speakers: Mr Juan Ignacio Bravo (Deimos Space), Dr Murray Kerr (Deimos Space)

Image dequantization for hyperspectral lossy compression with convolutional neural networks Speaker: Dr Diego Valsesia (Politecnico di Torino)

Solar Wind Analyzer - The Solar Orbiter milestone Towards On-board Intelligent decision making systems Speaker: Dr Vito Fortunato (Planetek Italia s.r.l.)

From a hyperspectral/ multispectral on-board compressor to a Knowledge-based on-board processor: spaceOP3C HW/SW evolution

Speakers: Dr Leonardo Amoruso (Planetek Italia s.r.l.), Dr Michele Iacobellis (Planetek Italia s.r.l.)

On-Board Data Reduction Software in CHEOPS

Speaker: Dr Roland Ottensamer (University of Vienna)

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 2

*

Introduction to CCSDS compression standards and implementations offered by ESA

Lucana Santos Roberto Camarero

ESA UNCLASSIFIED - For Official Use

The set = + 11 = ≦ ≤ 11 11 ≤ ≤ # = 0 11 ≤ ± ± ± ± ±

1st complex on-board image processing ever?

ESA UNCLASSIFIED - For Official Use

Roberto Camarero – Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 4

*

Introduction

Introduction

How is compression possible?

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 5

*

_ II 🛌 :: 🖛 🕂 II 🗯 🔚 II II _ 2 🔚 :: II 🗰 👘 👬

Introduction

The challenge

Meet <u>unique requirements of space missions</u> and provide <u>state-of-the-art performance</u>

The goal

- Ease interoperability and adoption of compression
- Develop low-complexity high-throughput algorithms
- Ease efficient implementation on space-qualified HW

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 6

*

ESA UNCLASSIFIED - For Official Use

Z II ≥ II = + II = ⊆ Z II II Z Z H = 0 II = II = H

CCSDS algorithms (Consultative Committee for Space Data Systems)

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 7

CCSDS algorithms (Consultative Committee for Space Data Systems)

The Consultant Constitutes for Spaces	the considered framework for large to be larger	The canadian for face bits Jones	the Consultant Constitue for Space Data Systems		
Recommendation for Space Data System Standards	Recommendation for Space Data System Standards	Recommendation for Space Data System Standards	Recc The Consultative Consultative Bir Space Data Systems		
IMAGE DATA COMPRESSION	SPECTRAL PREPROCESSING TRANSFORM FOR MULTISPECTRAL AND HYPENSPECTRAL MAGE COMPRESSION	LOSSLESS DATA COMPRESSION	Recommendation for Space Data System Standards		
RECOMMENDED STANDARD	RECOMMENDED STANDARD	RECOMMENDED STANDARD	MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION		
CCSDS 122.0-8-2	CCSDS 122,1-B-1	CCSDS 121.0-B-2			
BLUE BOOK	BLUE BOOK	BLUE BOOK	RECOMMENDED STANDARD CCSDS 123.0-B-2		
September 2017	September 2017	May 2012	BLUE BOOK February 2019		
CCSDS 122	CCSDS 122.1	CCSDS 121	CCSDS 123		
 Lossless or lossy 2D compressor based on DWT 	 Lossless or lossy 3D (1D+2D) compressor 	 1D Universal lossless based on Rice codes 	 Multi/hyperspectral 3D predictive compressor 		

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 8

CCSDS 122.0

Image Data Compression : Lossy & Lossless

- ◆ Blue Book. Issue 1 November 2005. Issue 2 September 2017
- ♦ DWT + Bit-Plane Encoder
- ✤ Progressive lossy to lossless
- ✦ Fixed-rate or fixed quality
- ♦ Green Book CCSDS 120.1-G-2

DC component

Ħ

Low-pass filter

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 9

*

European Space Agency

coefficient

CCSDS algorithms (Consultative Committee for Space Data Systems)

Recommendation for Space Data System Standards	Recommendation for Space Data System Standards	Recommendation for Space Data System Standards	Recr.
IMAGE DATA COMPRESSION RECOMMENDED STANDARD COSDS 122.08-2	TRANSFORM FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION RECOMMENDED STANDARD CCSDS 122.18-1	RECOMMENDED STANDARD	LOW-COMPLEXITY LOSSLESS AND NEAR-LOSSLESS MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION
BLUE BOOK Beptember 2017	BLUE BOOK September 2017	BLUE BOOK May 2012	RECOMMENDED STANDARD CCSDS 123.0-B-2 BLUE BOOK February 2019
 CCSDS 122 Lossless or lossy 2D compressor based on DWT 	CCSDS 122.1 ► Lossless or lossy 3D (1D+2D) compressor	CCSDS 121 ► 1D Universal lossless based on Rice codes	 CCSDS 123 Multi/hyperspectral 3D predictive compressor

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 10

CCSDS 122.1

Spectral Pre-processing Transform For Multispectral & Hyperspectral

Image Compression: Lossy & Lossless

- Spectral transform (1D) + 2D compressor (CCSDS 122.0-B)
- ◆ Blue Book. Issue 1. September 2017

- » 1D Wavelet transform (5/3 "lossless" DWT)
- » ALT (Exogenous KLT): Pre-trained Fixed Arbitrary Linear Transform
- » POT

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 11

*

· = ■ ▶ = = + ■ + ■ ≡ = = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ₩ ■

CCSDS algorithms (Consultative Committee for Space Data Systems)

-						
The Constantie Constant for Space Data Bystems	The Consultative Committee for Space Data Systems	The Canaditative Constitutes for Space Data Systems	The Consultative Consultive for Space Data Systems			
Recommendation for Space Data System Standards	Recommendation for Space Data System Standards	Recommendation for Space Data System Standards	Reck The Consultative Committees for Space Data Systems			
IMAGE DATA COMPRESSION	SPECTRAL PREPROCESSING TRANSFORM FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION	LOSSLESS DATA COMPRESSION	Recommendation for Space Data System Standards			
RECOMMENDED STANDARD CCSDS 122.0-B-2	RECOMMENDED STANDARD CCSDS 122.1-8-1	RECOMMENDED STANDARD CCSDS 121.0-B-2	MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION			
BLUE BOOK September 2017	BLUE BOOK September 2017	BLUE BOOK May 2012	RECOMMENDED STANDARD CCSDS 123.0-B-2			
			BLUE BOOK February 2019			
CCSDS 122 CCSDS 122.1		CCSDS 121	CCSDS 123			
 Lossless or lossy 2D compressor based on DWT 	 Lossless or lossy 3D (1D+2D) compressor 	 1D Universal lossless based on Rice codes 	 Multi/hyperspectral 3D predictive compressor 			

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 12

CCSDS 121.0

- ◆ Blue Book. Issue 1 May 1997. Issue 2 May 2012
- Lossless low-complexity predictive compressor
- ✦ Green Book CCSDS 120.0-G-3
- Different options for different distributions
- Low-Entropy options

SELECTED OPTION

OPTION NO

COMP.

CODE OPTION

SELECTION

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 13

*

ESA UNCLASSIFIED - For Official Use

CCSDS algorithms (Consultative Committee for Space Data Systems)

<image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<image/> <section-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header></section-header>	<image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	
 CCSDS 122 Lossless or lossy 2D compressor based on DWT 	 CCSDS 122.1 Lossless or lossy 3D (1D+2D) compressor 	CCSDS 121 ► 1D Universal lossless based on Rice codes	 CCSDS 123 Multi/hyperspectral compressor based on prediction.

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 14

CCSDS 123.0-B-1

Lossless Multispectral & Hyperspectral Image Compression

- ◆ Blue Book. Issue 1. May 2012
- Lossless low-complexity predictive compressor
- Based on Fast-Lossless (FL) algorithm (NASA)
 - » Sample adaptive encoder (FL) & Block-adaptive encoder (CCSDS 121.0-B)
- ♦ 3D predictor adaptively adjusts prediction weights
- ♦ Green Book CCSDS 120 2-G-1

CCSDS algorithms (Consultative Committee for Space Data Systems)

The Consultance Committee for Space Data Systems	The Consultation Connelline for Space Data Bysisms	The Constitutive Constitute for Space Data Systems		
Recommendation for Space Data System Standards	Recommendation for Space Data System Standards	Racc he Consultative Committee for Space Data Systems		
SPECTRAL PREPROCESSING TRANSFORM FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION	LOSSLESS DATA COMPRESSION	Recommendation for Space Data System Standards LOW-COMPLEXITY LOSSLESS AND NEAR-LOSSLESS		
RECOMMENDED STANDARD CCSDS 122.1-B-1	RECOMMENDED STANDARD CCSDS 121.0-8-2	MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION		
		RECOMMENDED STANDARD		
BLUE BOOK September 2017	BLUE BOOK May 2012	CCSDS 123.0-8-2		
		BLUE BOOK February 2019		
SDS 122 CCSDS 122.1		CCSDS 123		
 Lossless or lossy 3D (1D+2D) compressor 	 1D Universal lossless based on Rice codes 	 Multi/hyperspectral 3D predictive compressor 		
	<text><text><text><text><text><text><text></text></text></text></text></text></text></text>	Proversities of the space Data System Standards Commendation for Space Data System Standards PECTRAL PREPROCESSING TRANSFORM FOR MULTSPECTRAL AND HYPERSPECTRAL AND HYPERSPECTRAL MAGE COMPRESSION RECOMMENDED STANDARD CSDD 122.1-8-1 BLUE BOOK September 2817 CCSDDS 122.1-8-1 BLUE BOOK September 2817 CCSDDS 122.2.1 CCSDDS 122.2.1 CCSDDS 122.2.1 CCSDDS 122.2.1 CCSDDS 122.2.1 D Lossless or lossys 3D (1D+2D) CCSDDS 122.1 CCSDDS 122.1 CCSDDS 122.2.1 CCSDDS 122.1 CCSDDS 122.2.1 CCSDDS 122.1 <pccsds 122.1<="" p=""> CCSDDS 12</pccsds>		

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 16

CCSDS 123.0-B-2

Low-Complexity Near-Lossless Multispectral & Hyperspectral

Image Compression

- Beyond lossless: + quantization + new entropy coder for low entropy
- ✦ Accurate quality control in pixel-by-pixel basis
 - » Bounded maximum and/or relative error
- ✦ Very low memory & computational resources (wrt CCSDS 122.1-B)
- ✦ Includes more efficient entropy coder for low bitrates

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 17

*

_ II ≥ II = + II = ≝ = II II = = H = Ø II = II ₩ ≦

Pros and Cons of each standard

	Type of Data	Complexity	Throughput	Lossless efficiency	Lossy efficiency	Fixed-rate Fixed quality	Commercial counterpart	Relevant Space implementation
CCSDS 121.0-B-2	1D 32 bits	000	000	000		Variable- rate Lossless	JPEG-LS	SHyLoC ESA IP
CCSDS 122.0-B-2	2D 16 bits(B-1) 32 bits(B-2)	٢	00	00	000	Fixed-rate Coarse quality control	JPEG2000	CWICOM ASIC
CCSDS 122.1-B-1	3D 16 bits	∕≌*	٢	00	000	Variable- rate Mechanism for rate allocation	JPEG2000	
CCSDS 123.0-B-1	2D/3D 16 bits	00	00*	000		Variable- rate Lossless	JPEG-LS	SHyLoC ESA IP
CCSDS 123.0-B-2	2D/3D 16 bits	٢	≌/☺∗	000	000	Variable- rate Precise quality control	JPEG2000	

* Mode-dependent

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 18

4

Implementations supported by ESA

nteger/Floa Bit Plane Equalization 9/7 DWT Encoder (bypass Controller Source Packet Input Interface (Registers) Generator Video Input Output Frame (Pixels) (Packets) SpaceWire Serial Link Input & Contro nput & Control

Key features

Lossless or lossy mode

Exact Fixed bit-rate Equalization (non–uniformity correction) CCSDS Source Packet formatting **No Eternal Memory**. CQFP 256 ASIC Bit accurate C reference software model

Budgets

60 Mpixels/s

Up to 16 bits

Max width up to **3496 columns**

Max height unlimited (push-broom)

Compression 0.5 bpp to 10 bpp

Power ~100 mW/Mpix/s max (5-6W max)

Roberto Camarero – Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 19

ESA UNCLASSIFIED - For Official Use

SHyLoC Compression IP Cores

- Implementation of two lossless compression IP cores.
- **Described** in VHDL.
- Compliant with:
 - CCSDS 121
 - CCSDS123 lossless
- Includes all configuration modes.
- Part of ESA's IP core's Repository.
- Developed by University of Las Palmas de Gran Canaria.
- Technology independent:

One-time programmable FPGAs (Microsemi); Reconfigurable FPGAs (Virtex5); ASIC (DARE libraries)

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 20

*

ESA UNCLASSIFIED - For Official Use

SHyLoC IP Cores

• The IP cores can be combined into a logical single entity.

- CCSDS 123 IP core:
 - High-performance lossless compression of multispectral and hyperspectral data.
 - Supports BSQ, BIP and BIL sample order.
 - Can be used as external pre-processor (predictor) for the CCSDS 121 IP core.

- CCSDS 121 IP core:
 - Universal lossless compressor based on Rice's coding.
 - Can be used as external entropy coder for the CCSDS 123 IP.

ESA UNCLASSIFIED - For Official Use

Roberto Camarero – Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 21

*

_ II ⊾ :: ■ + II ■ ≔ ⊆ II II _ _ Z :: H _ 0 II _ I = : K →

SHyLoC as HW accelerator

- Throughput up to 1 Gbps (~60 Msamples/s for 16-bit input) when implemented on a Virtex5 FX130.
- Include AMBA AHB interfaces.
- Compatible with GRLIB and LEON2-FT.

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 22

*

= 11 🛌 == + 11 == 🔚 == 11 11 == == 💷 🖬 🖬 == 12 👫 💼

SHyLoC performance

- Compression performance in terms on data reduction depends on the CCSDS standards.
- Performance in terms of throughput, hardware resources and power consumption depends on the selected configuration and target device.
- Mapped to 7 different FPGA devices: Xilinx Virtex 5 & 5QR; Microsemi ProASIC3E, ProASIC3L, RTAX2000, RTAX4000 and RTG4
- Maximum throughput 140 Msamples/s in Virtex5 FX130, 80 Msamples/s in RTG4
- Low complexity: maximum 7% of LUTs Virtex5 FX130 and 13% Microsemi RTG4.
- On demonstrator (Virtex6), throughput of up to 1 Gbps.

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 23

The set of th

SHyLoC availability

- Distributed by the ESA IP Core's service (https://www.esa.int/Our Activities/Space Engineering Technology/Microelectronics/S HyLoC IP Core)
 - ESA/ESTEC maintains and distributes a small catalogue of IP Cores.
 - The ESA IP Cores can be licensed for research and/or commercial use, under specific conditions to companies based in ESA members and participants states
- Commercial version by Cobham Gaisler.

Roberto Camarero – Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 24

ESA UNCLASSIFIED - For Official Use

CONCLUSION

Compression is an **enabling technology** that **maximizes mission capacities** while **minimizing data rates and volumes and overall costs**

- Only major drawback is complex and costly implementation in space HW
 - Eased by standardization and "of-the-self" solutions (ESA IP and components)

CCSDS standards to **meet space missions requirements** providing **state-of-the-art performances**

- Large choice depending on:
 - ✤ Type of data: 1D, 2D or 3D
 - ✤ Type of compression: Lossless, lossy or near-lossless
 - ◆ Operating mode: fixed data rate (volume) or fixed quality
 - Memory and computing resources
- Widely available software & hardware implementations
- Large users community and literature

ESA UNCLASSIFIED - For Official Use

Roberto Camarero - Lucana Santos | OBDP 2019 | 26/02/2019 | Slide 25

*

· = ■ ► = = + ■ = ≔ = 1 ■ ■ = = = = ■ ■ ■ ■ = = = ₩ ▲