NanoXplore

NX RHBD FPGA solutions for OBDP applications

Joël LE MAUFF Head of Marketing & Sales

Noordwijk, NL – 27 February 2019

1- Company Overview

2- NX RHBD FPGA devices
3- Embedded Processing
4- Digital Signal Processing
5- High Speed Serial Links
6- CONCLUSION
Questions & Answers

NanoXplore Overview

- Created in 2010 by three veterans of semiconductor industry with long experience in the <u>design</u>, test and <u>debugging of FPGA cores</u>.
- Fabless semiconductor company headquarter in France
- R&D engineers in two offices in France:
 - Sèvres: Hardware developments
 - Montpellier: Software developments
- NanoXplore is a leader in the design of large scale programmable logic arrays for state of the art FPGA cores
- The company is focusing on 2 main activities:
 - Offer hard block embedded FPGA core IP (NX-eFPGA)
 - Developing rad-hard FPGA qualified for space applications (from BRAVE contract)

1- Company Overview

2- NX RHBD FPGA devices

3- Embedded Processing
4- Digital Signal Processing
5- High Speed Serial Links
6- CONCLUSION
Questions & Answers

Phase 1: Embedded FPGA cores

- Phase 1: Embedded FPGA cores
- <u>Phase 2</u>: 65nm RHBD FPGA devices development

- <u>Phase 1</u>: Embedded FPGA cores
- <u>Phase 2</u>: 65nm RHBD FPGA devices development
- <u>Phase 3</u>: Switch to 28nm FD-SOI

NX From eFPGA to BRAVE & beyond

- <u>Phase 1</u>: Embedded FPGA cores
- <u>Phase 2</u>: 65nm RHBD FPGA devices development
- Phase 3: Switch to 28nm FD-SOI
- <u>Phase 4</u>: Penetration of additional Niche markets with non-RH devices

1st OBDP Workshop – Noordwijk, NL – 25/27feb18

© 2019 Nanoxplore SAS Company Confidential *Copy not authorized without written approval*

© 2019 Nanoxplore SAS Company Confidential Copy not authorized without written approval

1st OBDP Workshop – Noordwijk, NL – 25/27feb18

#10

NXcore is NanoXplore IP core generation tool

Planned within next NXmap versions

- SpaceWire IP core
- DDR Interface (DFI2.1)
- Parallel FIR filters generator (sample frequency > 200MHz),

Planned soon

- Multi Multiplier-Accumulator (MAC sequencial filters)
- Sinus/Cosinus tables,
- Numerically Controlled Oscillator (NCO), Direct Digital Synthetizer (DDS)
- Extended Precision Multipliers,
- Complex Multipliers, ...

From NX Eco-system

- Adentis/Maya Technology: Mil-Std-1553B BC/RT,
- <u>Cobham Gaisler</u>: Leon2/3, GRLIB ...
- Skylabks: PicoSkyFT-L, and PicoLIB (UART, Timer, I2C, GPIO, ...)
- <u>STAR Dundee</u>: SpaceWire, SpW CODEC, RMAP, Routing Switch, even High Perf. FFTs, Image Processing, Camera Interface, CAN...

NXscope is NanoXplore Embedded Logic Analyser IP core

Process

- Nxscope is driven via ANGIE JTAG adapter and NXbase2 (delivered with EK),
- Create your own ZLA IP core with NanoXplore tools
- Instantiate the IP Core in the source code of your design
- Implement the design and check the results
- Generate the bitstream
- Launch the Logic Analyzer GUI
 - Configure the FPGA with the bitstream
 - Configure the graphic waveform and signals radix
 - Save the graphic setup
 - Launch the trigger
 - Analyze the results

Features

- Up to 64 sampled lines,
- Up to 32 trigger lines,
- Flexible trigger conditions
 - Detection of values and/or edges on trigger lines
 - Programmable pre-trigger samples
 - Multi conditions trigger

A 19802 1.441 1991 1991 1993 1993 1997年4日 1997年102031 11日10日 222251233 1998日4日 大阪利利市

Full view

15 64 65 16 67 18 18 19 10 10 10 14 14 1

1- Company Overview 2- NX RHBD FPGA devices

3- Embedded Processing

4- Digital Signal Processing
5- High Speed Serial Links
6- CONCLUSION
Questions & Answers

NX From eFPGA to BRAVE & beyond

medium NG

- 34K LUTs / 3Mb RAM ٠
- A SoC can be mapped in ٠ the fabric.
- Leon3 based SoC has • already been validated. (Max Freq.: ~40 Mhz)

- ٠
- ARM Cortex R5 Hard IP

μΡ

SoC

fabric

Mid-End FPGA

- HSSL
- µP:200 MHz ٠

- 137K LUTs / 10Mb RAM 517K LUTs / 36Mb RAM
 - µP : 600 MHz

NG large - Hard IP ARM Cortex-R5

The Hard IP Processor core NX_Cortex-R5 contains

- Cortex-R5 CPU
- CoreSight ETMR5 (Embedded Trace Macrocell)
- CoreSight TPIU-Lite (Trace Port Interface Unit)
- CoreSight DAP-Lite (Debug Access Port)

 The Bus Matrix and Users IPs (Memory, IO Controller, CoProcessor) are implemented in the FPGA Fabric.

• The Trace RAM and JTAG/Serial Wire controllers are also implemented in the FPGA Fabric.

- NG-Ultra becomes a System-On-Chip
 - **4x** FPGA density vs NG-Large
 - Full SoC architecture based on **Double Dual-core ARM Cortex-R52**, optimized for High-Performance, Hard Real-Time applications and **designed to face Space challenges**.

Hereafter the NG-Ultra / DAHLIA SoC architecture

#17 1st OBDP Workshop – Noordwijk, NL – 25/27feb18

© 2019 Nanoxplore SAS Company Confidential Copy not authorized without written approval

1- Company Overview

2- NX RHBD FPGA devices

3- Embedded Processing

4- Digital Signal Processing

5- High Speed Serial Links6- CONCLUSIONQuestions & Answers

NX High Performance DSP Block

Allow to implement efficient high rate arithmetic operations such as

- Multiplications
- Adders/subtracters
- Filters
- Fast Fourrier Transform
- Modulation

NX High Performance DSP Block

Three main operators

- Pre-adder/subtracter (1)
- 24x19-bit multiplier (2)
- ALU / post-adder/subtracter (3)

User's selectable levels of pipeline for higher performance

- WE input enables/disables all internal registers
- RST available for internal registers
- RSTZ for output registers (Z)

20

- DSP blocks in the same CGB row can be chained.
- Direct 0 ns delay routing (red, green and blue arrows)

© 2019 Nanoxplore SAS Company Confidential Copy not authorized without written approval

 Inference : most common constructs are supported by Xmap synthesis

- Instantiation : Gives access to all DSP block features but less readable
 - Primitive NX_DSP
 - All inputs and outputs are declared as std_logic (no vectors)
 - Generic (parameters) are organized as multibit groups (raw_config#)
 - Primitive NX_DSP_SPLIT
 - All inputs and outputs buses are declared as std_logic_vectors
 - Generic can be assigned by name
- Using NXcore : NXcore is NX IP Core generator
 - Can be used to quickly and efficiently generate :
 - Parallel FIR filters (Transpose, Transpose symmetric, Transpose_Dual_Channel, Systolic)
 - Semi-parallel FIR filters


```
process(CLK)
              begin
   if rising edge(CLK)
                        then
      COEF R1 <= COEF;
      COEF R2 \leq COEF R1;
      DIN L R1 <= DIN L;
      DIN R R1 \leq DIN R;
      PREAD <= DIN L R1 + DIN R R1;
      MULT <= PREAD * COEF R2;
      MULT R <= MULT;
      if RST = 1' then
         ACCUM <= (others => 0');
      else
         ACCUM \leq ACCUM + MULT;
      end if;
   end if;
end process;
```


NX DSP implementation with NXcore

#24 1st OBDP Workshop – Noordwijk, NL – 25/27feb18

© 2019 Nanoxplore SAS Company Confidential Copy not authorized without written approval

High sample rate Parallel FIR filters

- Transpose or Systolic :
 - Systolic uses less general routing resources, but has higher latency
 - N DSP blocks for N-tap filter
 - Up to 100 MHz sample rate (into NG-Medium)
- Transpose symmeric :
 - N/2 DSP blocks for N-tap filter
 - 100 MHz sample rate (into NG-Medium)
- Transpose Dual Channel (ex : I/Q) :
 - N DSP block for N-tap filter
 - 50 MHz sample rate (into NG-Medium)
- Semi-Parallel FIR filters (not yet available)
 - Combine tile logic & DSP blocks for shared computation
 - Sample rates : 2 to 25 MHz (into NG-Medium)

More functions will be available into NXcore in a near future.

NCore // FIR Filter - Transpose

- 100% implemented with pipelined DSP chain
 - Efficient usage of resources
 - High performance
 - Performance is only limited by the input routing and load
 - Reduced latency

© 2019 Nanoxplore SAS Company Confidential

Copy not authorized without written approval

Vcore // FIR Filter – Transpose Symmetric

- N-tap filter (N= 6 in this example) requires only N/2 DSP blocks
 - No additional DFFs or logic required

- 1- Company Overview
- 2- NX RHBD FPGA devices
- 3- Embedded Processing
- 4- Digital Signal Processing

5- High Speed Serial Links

6- CONCLUSION

Questions & Answers

- SERDES developed in C65 Space, (acc. VELOCE contract),
- ◆ 0.70 6.25 Gbps data rate,
- Hex HSSL architecture:
 - HSSL blocks provide multi-protocol high-speed serial link capability with multi-rate support,
 - Hex HSSLs are composed of 6 RX/TX lanes, a PLL, and a calibration circuit.

A_OXT N_OXT A_OXT N_OXT	N_1X1_P	RX1_N TX2_P TX2_N	RX2_P RX2_N	CLK_REF	RX3_N RX3_P	TX3_N	RX4_N RX4_P	TX4_N TX4_P	RX5_N RX5_P	TX5_N
TX PMA			RX PMA		RX	TX	RX			
			Ň							
TX RX PCS PCS	TX PCS	RX TX PCS	RX PCS	Calibration	RX PCS	TX PCS	RX PCS	TX PCS	RX PCS	TX PCS
0:6/	0:6/	0:62	[0:62]	OUT LK2 CLK	(0:62)	[0:6/	0:62	• [0:62	[0:62]	(0:62
TX0_DATA	TX1_DATA	RX1_DATA TX2_DATA	RX2_DATA	CALIBRATE PCS_C	RX3_DATA	TX3_DATA	RX4_DATA	TX4_DATA	RX5_DATA	TX5_DATA

Protocol	Туре	Encoding
WizardLink	1,600 – 2,500Gbps	8B/10B
JESD204B	3,125 – 6,25Gbps	8B/10B
ESIstream	3,125 – 6,25Gbps	14B/16B
Serial RapidIO	3,125 – 6,25Gbps	8B/10B
SpaceFibre	3,125 – 6,25Gbps	8B/10B

- Each transceiver lane includes the PMA and PCS hard macros.
- The PCS is programmable in order to become compliant with all protocols
- The SERDES block has configurable features such as data width (up to 80 bits in parallel), equalization and protocol dependent properties.
- ♦ NG-Large will embed 4 Hex SERDES → 24 HSSL 6,25Gbps
- Here above HSSL supported protocols:

#29 1st OBDP Workshop – Noordwijk, NL – 25/27feb18

- SERDES developed in C28 Space,
- Hex HSSL architecture:
 - HSSL blocks provide multi-protocol high-speed serial link capability with multi-rate support,
 - Quad HSSLs are composed of 4 RX/TX lanes, a PLL, and a calibration circuit.

- Each transceiver lane includes the PMA and PCS hard macros.
- The PCS is programmable in order to become compliant with all protocols
- The SERDES block has configurable features such as data width (up to 80 bits in parallel), equalization and protocol dependent properties.
- ♦ NG-Ultra will embed 8 Quad SERDES → 32 HSSL 12,5Gbps

Company Overview
 NX RHBD FPGA devices
 Embedded Processing
 Digital Signal Processing
 High Speed Serial Links
 6- CONCLUSION

Questions & Answers

CONCLUSION

Thank you

© 2019 Nanoxplore SAS Company Confidential Copy not authorized without written approval

NanoXplore

www.NanoXplore.com