From eFPGA cores
to
RHBD System-On-Chip FPGA

4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18
NanoXplore Overview

- **Created in 2010** by three veterans of semiconductor industry with long experience in the design, test and debugging of FPGA cores.
- **Fabless** semiconductor company headquarter in France
- R&D engineers in two offices in France:
 - Sèvres: Hardware developments
 - Montpellier: Software developments
- NanoXplore is a leader in the design of large scale programmable logic arrays for state of the art FPGA cores
- The company is focusing on 2 main activities:
 - Offer hard block embedded FPGA core IP (NX-eFPGA)
 - Developing rad-hard FPGA qualified for space applications (from BRAVE contract)
NanoXplore - FPGA architecture

- 1st of all, hereafter a basic FPGA architecture

- 2nd, there are 4 different ways to do interconnection:
 - Antifuse
 - Flash-based
 - Std 6T-cell SRAM
 - RHBD 12T/16T-cell SRAM
FPGA market and Main Vendors

FPGA TAM
~$6.50B
Xilinx, Intel PSG, Microsemi, Lattice

Aerospace & Defense FPGA TAM
~$1.00B
Xilinx, Intel PSG, Microsemi

Space FPGA TAM
~$0.23B
Xilinx, Microsemi
(source ESA)

Source: Grand View Research Dec 2016
FPGA market and Main Vendors

FPGA TAM
~$6,50B
Xilinx, Intel PSG, Microsemi, Lattice

Aerospace & Defense FPGA TAM
~$1,00B
Xilinx, Intel PSG, Microsemi

Space FPGA TAM
~$0,23B
Xilinx, Microsemi + (source ESA)

Source: Grand View Research Dec 2016
NanoXplore – From eFPGA to RH FPGA

- NX has a **strong experience** in developing eFPGA cores on the most advanced technology nodes.
- **Hi-rel** markets (like space) require specific features (hardening, reliability, security etc) which are **not well addressed by market leaders** due to limited market opportunity: **Not true for NX**.
- European funding to support that initiative: **CNES, ESA, EC, DGA, DGE, BPI** ...
- **Space market** has many synergies with additional market such as Avionic, Military, Railway and Medical, even Automotive
 - Limited competition and clear technology advantages.

#6 4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18

© 2018 Nanoxplore SAS Company
Export Regulation

- NX RH FPGA devices are **ITAR & EAR-free** ➞ No Dependance to USA.
- Classified 3A001.a.2.c according (EC)2015/2420 rules.

<table>
<thead>
<tr>
<th>US Dep’t. of Commerce</th>
<th>US Department of State</th>
<th>US Department of Treasury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bureau of Industry & Security</td>
<td>Directorate of Defense Trade Controls</td>
<td>Office of Foreign Assets Controls</td>
</tr>
<tr>
<td>Export Administration Regulations</td>
<td>International Traffic in Arms Regulations</td>
<td>Administration of US economic sanctions & embargoes</td>
</tr>
<tr>
<td>“Dual Use” products/ technologies</td>
<td>Inherently military products/ technologies</td>
<td></td>
</tr>
<tr>
<td>Items subject to EAR</td>
<td>U.S. Munitions List</td>
<td></td>
</tr>
<tr>
<td>Commerce Control List</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Process Technology
High Performance vs Low Power

- Chip designers are challenged to choose between
 - Standard processes to meet performance goals or
 - Low Power processes to meet power goals.

- Parts designed for a fixed supply voltage and manufactured in the FF corner will have
 the highest frequency, have the most leakage and provide the best performance.

- Parts manufactured in the SS corner will have the slowest performance and have the
 least leakage and consume the least power.
Process Technology

STM C65 SPACE Low Power

Features

Process
- ST/Microelectronics C65SPACE (65nm CMOS)
- 3.3V IO gate oxide GO2 (5nm)
- 1.2V core gate oxide GO1 (1.9nm), triple VT transistors
- 7 copper metallization, 5 thin and 2 thick
- Low-K inter-metallic dielectrics for thin metal layers
- High density SRAMs
- Compatible with flip-chip and wire bonding packaging

Radiations
- SEL-free up to LET = 60MeVcm^2/mg at 125°C Tj and Vdd max
- SEE hardened library
- Tested up to a total dose of 300 krad (Si)

Reliability
- Library cells models with 20 years aging
- Transistor models including aging alteration
- ESD better than:
 - 2kV in HBM (Class 2 / MIL-STD-883H)
 - 150V in MM
 - 250V in CDM

Design flow
- An ST customized design flow (RTL to GDS) involving commercial solutions (Synopsys, Cadence, Mentor...) is available for partners and certified design houses:
 - Front-End kit from RTL to gates based
 - SiPkit for IO ring generation
 - FTK8 for place and route
 - SignOffKit for final verification before tape-out
- For customer owned tools (COT) flow, ST provides the C65SPACE design platform along with the DRM and sign-off kit.

Description
The C65SPACE is fabricated on a proprietary 65nm, 7 metal layers CMOS process intended for use with a core voltage of 1.2V ±0.10V.

The ST standard-cells, memories and PLL have been designed and characterized to be compatible with each other.

Library offer
- Comprehensive library of standard logic with P/V and aging corners models
- IO pad libraries provide interfaces at 3.3V +/-0.30V / 2.5V +/-0.25V and 1.8V +/-0.15V
- High speed IO Pad LVDS supplied at 2.5V +/-0.25V up to 650Mbps
- Cold spare ICs with single/double row support
- Memories generation: single port SRAM, ROM, Dual port SRAMs, BIST library, EDAC library
- Wide-range PLLs (1.2GHz with multi-phase outputs)
- 6.25Gbit/s high speed serial links (HSSL)
Process Technology

STM C28 SPACE FD-SOI

- FD-SOI substrates enable ultra-low-power features, unique cost/performance tradeoff, high-reliability and high-performance-mixed signal integration for a wide range of applications.

Power and energy efficiency
- Ultra low leakage, wide Body-Bias & operating voltage range

Analog performance
- for mixed signal & RF design

Robustness
- for mission critical applications

Cost effective platform

Source: http://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI/efficiency-at-all-levels.html

© 2018 Nanoxplore SAS Company
NX FPGAs are Rad Hardened

All logic of NX FPGAs is hardened by design (RHBD) and simulated with TFIT software.

On top of it, Embedded Configuration Memory Integrity Check (“CMIC”)

- EDAC
 - Register File
 - DPRAM

- DICE
 - Cfg Memory
 - User Register
 - DFF

- TMR
 - Other Logic Cells (SKYROB)

- DMR
 - Clock Tree
 - Clock buffer
 - Matrix system
CMIC Overview

CMIC = Configuration Memory Integrity (= Scrubber Ctrl)

- The CMIC is an embedded engine performing automatic verification and repair of the configuration memory.

- The CMIC period can be set by the user.
- At 50MHz, the minimum period is 5.3 ms and the maximum 65 days.
- The configuration memory scan takes 4ms (+1.3ms delay).
- The CMIC reference memory is protected by ECC.
- The CMIC does not need to access the external NVRAM when performing checks and repairs at run time.
NanoXplore Rad-Hard FPGA Roadmap

2017

Low-End FPGA
(Just Logic, RAM & DSP)
- 35kLUTs / 3Mb RAM
- 112 DSP
- No HSSL
- No Hard IP Processor

NG-MEDIUM
(NX1H550FSP)

Mid-End FPGA
(+ SERDES & Processor)
- 140kLUTs / 10Mb RAM
- 384 DSP
- HSSL 6G
- Single-core ARM-R5
 (No Peripherals)

NG-LARGE
(NX1H100FSP)

High-End FPGA
(+ SoC architecture)
- 550kLUTs / 40Mb RAM
- 1760 DSP
- HSSL 12G
- Quad-core ARM-R52
 (Full SoC architecture)

NG-ULTRA
(NX4S50TSP)

2018

2019

2017 2018 2019

4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18
NX RH FPGA products positioning

- **Performance FPGA x2**
- **Power Consumption / 4**
- **Lower SER**

CURRENT MARKET

- 65nm RH NG-MEDIUM
 - NX1H3SS (FR)
- 65nm RH NG-LARGE
 - NX1H40TSP (FR)
- 28nm RH NG-ULTRA
 - NX2H550TSP (FR)

- Performance FPGA x2
- Power Consumption / 4
- Lower SER
Programming Software: NanoXmap Overview

Diagram:

- Test bench
 - Simulation
 - FPGA library (.vhdl)
 - Simulation

- User HDL files
 - Creating project
 - Native.nxm
 - NanoXmap
 - Synthesize
 - Synthesized.nxm
 - Place
 - Placed.nxm
 - Route
 - Routed.nxm
 - Final design netlist (.vhd or .v) + Standard delay format (.sdf)
 - Bitstream
 - .nxm
 - Timing analysis

Legend:
- NanoXplore resources
- Third party tools
- User resources
- FPGA

4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18

© 2018 Nanoxplore SAS Company
NanoXmap Programming Software

NanoXmap-v2 targets to reach Best Performances/Features by End-2018

- **H1-19:** NanoXmap v3, IP Library
- **H2-18:**
 - NG-Large process on-going
 - Embedded Logic Analyser
- **Q2-18:** NG-Medium process stabilized

- **Q3-17 to Q1-18:**
 - NanoXmap optimization process against
 - Logic density
 - Operation frequency (*)
- **2014 to Q3-17:**
 - NanoXmap development: database, algorithms, debug and flow set up from synthesis to bistream
 - Implementation of all FPGA blocks

(*) Acc. LP process

4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18
Next planned NanoXmap features

IP Library

- **Planned in coming weeks**
 - *SpaceWire IP core*
 - *DDR Interface (DFI2.1)*

- **In the pipe**
 - *Parallel FIR filters generator,*
 - *FIFO generator (Synchronous & Asynchronous),*
 - *SIN/COS lookup table,*
 - even Direct Digital Synthetizer (DDS) or Numerically Controlled Oscillator (NCO),
 - *Complex Multiplier, Multiplier 24*30bits, Clock generator, etc.*

- **From NX Eco-system**
 - **3D-PLUS:** *DDR Controller,*
 - **Adentis/Maya Technology:** *Mil-Std-1553B BC/RT,*
 - **Skylabks:** *PicoSkyFT-L, and PicoLIB (UART, Timer, I2C, GPIO, ...)*
 - **STAR Dundee:** *SpaceWire, SpW CODEC, RMAP, Routing Switch,*
 - even High Perf. FFTs, Image Processing, Camera Interface, CAN...

And you, what do you need?
NanoXmap Embedded Logic Analyser

- Embedded Logic Analyser IP core (currently in VHDL)
- Expected Q3-18

Menu bar

Configuration parameters bar:
- Capture_width, capture_depth
- Trigger mode (basic or basic_and_edges)
- Capture_mode (pre_trigger_enable & value or multiple_windows)
- Adv_trigger_enable (single_level or two-level_trigger)
- User’s defined additional buffering: 0, 1 or 2

Status bar:
- Waiting for command
- Waiting for Adv_trigger
- Waiting for trigger
- Current capture window (for multiple_windows capture)
- Loading captured data

DATA_IN(15:0)
- **251**
- **3BAC**

ADDR_W(7:0)
- **1’**
- **0’**

CS

WR

DATA_OUT(15:0)
- **x”3BAC”**
- **x”4E”**

ADDR_R(7:0)

STATUS(3:0)
- **b”0110”**
- **x”1’**

ENA
- **55**

CNT(5:0)

- **Active Cursor**
 - C1: 604
 - C2: 1095
 - C3: 1917
 - C4: 491
 - C5: 713
 - C6: 222

- **Main trigger conditions**
 - Data_in = "0ADC"
 - Addr_W = "x73"
 - CS = "1’"
 - WR = x’(rising)
 - DATA_OUT = 0’xxxxxxxxxxxxxxxxxxxxx
 - ADDR_R = 0’xxxxxxxxxxxx
 - STATUS = 0’xxxx
 - ENA = x’x
 - CNT = 0’xxxxx

- **Adv trigger conditions**
 - DATA_IN = "0ADC"
 - ADDR_W = "x73"
 - CS = "1’"
 - WR = x’(rising)
 - DATA_OUT = 0’xxxxxxxxxxxxxxxxxxxxx
 - ADDR_R = 0’xxxxxxxxxxxx
 - STATUS = 0’xxxx
 - ENA = x’x
 - CNT = 0’xxxxx
1st NX Rad-Hard SRAM-based FPGA
NanoXplore Rad-Hard FPGA Roadmap

Step1 – NG-Medium

- **Frequency**: 200 MHz
- **Logic Density**: 35kLUT
- **Complexity**: Low-End FPGA (Just FPGA fabric)
- **Unit Price**: 4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18
NG-MEDIUM is ideally a Companion Chip

- FPGA companion chips expand the capabilities of embedded host processors by adding missing host features and by offloading high-speed processing tasks.
- FPGA provides the ideal platform to add custom features tailored to specific project needs and much of the design can be re-used to support multiple processors.
Overview

Device Details

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Details</th>
<th>NX1H35S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Register</td>
<td>3840FF283rows</td>
<td>32,256</td>
</tr>
<tr>
<td>LUT-4</td>
<td>408LUT283rows</td>
<td>34,272</td>
</tr>
<tr>
<td>Carry</td>
<td>96CY283rows</td>
<td>8,064</td>
</tr>
<tr>
<td>Embedded RAM</td>
<td></td>
<td>2,856Mb</td>
</tr>
<tr>
<td>DPRAM</td>
<td>28RAM2rows48Kb</td>
<td>2.688K</td>
</tr>
<tr>
<td>Core Register File</td>
<td>282RF3rows</td>
<td>168</td>
</tr>
<tr>
<td>Core Register File Bits</td>
<td>16864(16+6)bits</td>
<td>168K with ECC</td>
</tr>
<tr>
<td>Additional Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP Blocks</td>
<td>56*2rows</td>
<td>112</td>
</tr>
<tr>
<td>SpaceWire link I/F 400Mbps</td>
<td>CODEC</td>
<td>1</td>
</tr>
<tr>
<td>High-Speed Serial Link 6,25Gbps</td>
<td>SERDES Tx/Rx</td>
<td>0</td>
</tr>
<tr>
<td>Hard IP Processor core</td>
<td>ARM Cortex R5</td>
<td>0</td>
</tr>
</tbody>
</table>

Clocks

<table>
<thead>
<tr>
<th>Clocks</th>
<th>Details</th>
<th>NX1H35S</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 CKG * 6 CCK</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Inputs / Outputs

<table>
<thead>
<tr>
<th>Inputs / Outputs</th>
<th>Details</th>
<th>NX1H35S</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O banks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDR PHY (1I0Bs)</td>
<td>2 Complex + 5 Simple</td>
<td>13</td>
</tr>
<tr>
<td>SpaceWire PHY (8I0Bs)</td>
<td>2x / Bank Complex</td>
<td>16</td>
</tr>
</tbody>
</table>

Packages – User I/Os

<table>
<thead>
<tr>
<th>Packages – User I/Os</th>
<th>Details</th>
<th>NX1H35S</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG625 & CG625</td>
<td></td>
<td>374</td>
</tr>
<tr>
<td>CQ352</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>FG625 (Jun18)</td>
<td></td>
<td>374</td>
</tr>
</tbody>
</table>

Vcore

<table>
<thead>
<tr>
<th>Vcore: 1,2V</th>
<th>VDD: 1,5 or 1,8 or 2,5 or 3,3V</th>
<th>VAuxAnalog: 2,5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I/Os, Comp, Thermal Sensors, …)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Nanoxplore SAS Company

4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18
- Power consumption

- Static Power consumption depends of I/O configuration
- Dynamic Power consumption depends of the design
 - % of FPGA resources usage
 - Operating frequency
 - Finally the power consumption is 0,50 µW/MHz/LUT+DFF

- What about medium?

 - Quiescent VDDcore supply current is
 - 2 versus Antifuse FPGA
 - 2 versus Flash-based FPGA
 - 30+ versus biggest RHBD Sram-based FPGA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDD1V2</td>
<td>Quiescent* Core supply current</td>
<td>TBD</td>
<td>170</td>
<td>295</td>
<td>mA</td>
</tr>
<tr>
<td>IDD2V5A</td>
<td>Quiescent* VDD2V5A supply current</td>
<td>-</td>
<td>251</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>IDD_SER</td>
<td>Quiescent* VDD_SERVICE supply current</td>
<td>TBD</td>
<td>20</td>
<td>TBD</td>
<td>mA</td>
</tr>
</tbody>
</table>

Quiescent current is measured when the chip is turned on in safe-config mode without any design.

© 2018 Nanoxplore SAS Company
NG-MEDIUM includes 1x Space Wire CODEC

- Two mode of operation:
 - bitstream download
 - User application

- Full hardware implementation

- Up to 430Mbps

- Standard common mode LVDS buffers
Packet Level transmits address, cargo and end_of_packet

The soft IP implemented in the fabric can handle addressing and different protocols

Time code and control signals are accessed through a serial interface
The NG-MEDIUM includes **16 SW-PHY**

- Clock recovery and data sampling up to 430Mbps
- 10 bits parallel to serial interface
- The soft IP shall implement the exchange and packet level
- Can be used to implement various protocol (RMAP, switch)
NG-MEDIUM includes 16 DDR/DDR2 PHY (physical interfaces)

- The PHY includes the hardware to implement DDR transmission and reception up to 800Mbps
 - SSTL15/18/25 buffers
 - Differential DQS
 - Mixed analog / digital delay lines
 - Dynamic Phase Alignment sensor
 - DDR clock recovery
 - Delay Calibration
 - 4-bits serial / parallel interfaces

- The DDR IP includes
 - a DFI compliance block
 - a state machines for eye centering and initialization
 - a DDR controller
medium Packaging

LGA625
29*29mm body, 1.00mm pitch

MQFP352
48*48mm body, 0.50mm pitch
This NX1H35S bitstream size depends on the application size (configuration) and the number of user Core RAM and Core Register Files to be initialized.

- Maximum configuration (100%): 6.46Mb

The maximum bitstream size is 6460 + 56 \times 96.06 + 168 \times 3.03 = 12210Kb

- So, it would require 3x NVRAM 4Mb or 1x NVRAM 16Mb.

Configuration download would me 240ms maximum with Flash SPI @ 50MHz.

Most applications do not require to initialize all memories. A typical bitstream is less than 8Mb.

- These figures are just estimations. The actual size can be determined only by running the mapping software.
Bitstream Download: Cfg Memory

- Recommended Space FPGA Configuration Memory
 - 3D-PLUS Serial NOR Flash TMR’ed 128Mb / 3DFS128M01VS2728
 - 128Mbit SPI FLASH Nor
 - Single Power Supply operation:
 - Triple 128M-bit/16M-byte
 - Triple Modular Redundancy (TMR) integrated
 - Enhanced TID implementation
 - Supports standard SPI
 - 50MHz Normal
 - More than 100,000 erase/program cycles
 - More than 20-year data retention
 - Program 1 to 256 bytes per page
 - Program/Erase Suspend & Resume
 - Low Instruction Overhead Operations
 - Continuous Read 8/16/32/64-Byte burst
 - Selectable burst length
 - Available Temperature Range:
 - 0°C to 70°C
 - -40°C to +85°C
 - -55°C to +125°C
 - Programmable Clock 50MHz ÷ n
The DevKit is an evaluation board to be used interactively through
- **JTAG**, or
- standalone from a **EEPROM board**.

The board configuration mode is thus selected by on-board jumpers.

A 10-pin HE10 connector is provided to receive an EEPROM memory board (Atmel Dump Mode **EEPROM** or standard **SPI EEPROM**).

An optional SpaceWire connector allows **SpaceWire** configuration.
RADIATIONS

SEE campaigns

- 4 SEE campaigns done in Q4CY16 and Q4CY17
 - **OCT & NOV16:**
 - 2 UCL/HIF campaigns,
 - 1st silicon, packaged in LGA625,
 - Static & Dynamic SEU/SET/SEFI testing.
 - **NOV17:**
 - PSI/PIF campaign
 - Latest silicon, packaged in LGA625.
 - **DEC17**
 - UCL/HIF campaign,
 - Latest silicon, packaged in LGA625,
 - Full SEE testing (SEL/SEU/SET/SEFI)
Radiations

SEL testing

- Temperature 100° C, regulated by PID controller,
- Supply at their max value (+10%),
 - VDD1V2: 1.32V
 - VDD3V3: 3.63V
 - VDD2V5: 2.75V
 - VDD1V8: 1.98V
- Fluence over 10^7 p/cm$^{-2}$ with the highest LET 124Xe$^{35+}$
- NO LATCH-UP event was detected during the test period.
Heavy-Ions
Cfg Memory Xsection

SEU Cross-section (cm²/bit) vs. LET Eff (MeV/(mg/cm²))

- NG_medium Measure DUT6+7
- NG_medium Measure DUT6+7 tilted phi=0
- NG_medium Measure DUT6+7 tilted phi=90
- NG_medium Measure Weibull

Weibull parameter DUT6+7:
- SIGsat (cm²/bit): 5.1852 E-09
- Onset / L0 (MeV/(mg/cm²)): 0.11214
- Width (MeV): 36.4286
- s: 4.44737
Protons

Cfg Memory Xsection

- Xsection confidence intervals of 95% (alpha = 5%) are calculated for:
 - Relative fluence uncertainty of PSI is $\delta F/F = 5\%$.

![Graph showing cross section vs. energy with Weibull parameters]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGsat (cm2/bit)</td>
<td>4.84232E-16</td>
</tr>
<tr>
<td>Onset / L0</td>
<td>29.99900</td>
</tr>
<tr>
<td>MeV/(mg/cm2)</td>
<td></td>
</tr>
<tr>
<td>Width (MeV)</td>
<td>28.16281</td>
</tr>
<tr>
<td>s</td>
<td>0.47816</td>
</tr>
</tbody>
</table>
Orbital Upset Rate

HEAVY IONS Weibull

<table>
<thead>
<tr>
<th>SIGsat (cm²/bit)</th>
<th>5.1852 E-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset / L0 (MeV/(mg/cm²))</td>
<td>0.11214</td>
</tr>
<tr>
<td>Width (MeV)</td>
<td>36.4286</td>
</tr>
<tr>
<td>s</td>
<td>4.44737</td>
</tr>
</tbody>
</table>

PROTONS Weibull

<table>
<thead>
<tr>
<th>SIGsat (cm²/bit)</th>
<th>4.84232 E-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset / L0 MeV/(mg/cm²)</td>
<td>29.99900</td>
</tr>
<tr>
<td>Width (MeV)</td>
<td>28.16281</td>
</tr>
<tr>
<td>s</td>
<td>0.47816</td>
</tr>
</tbody>
</table>

- Orbital Upset Rate calculation (CREME 96 model, OMERE software):
 - Solar min, AE8 electron model, AP8 proton model,
 - shielding = 100mils
 - sensitive volume thickness = 2µm

Mission profile

<table>
<thead>
<tr>
<th>SER (bit/day)</th>
<th>2,05E-10</th>
<th>1,26E-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SER (chip/day)</td>
<td>1,30E-09</td>
<td>7,98E-3</td>
</tr>
<tr>
<td>LEO1 Pol (800km, 800km, 98°)</td>
<td>2,57E-09</td>
<td>1,58E-2</td>
</tr>
<tr>
<td>LEO2 ISS (400km, 400km, 51,5°)</td>
<td>3,06E-10</td>
<td>1,88E-3</td>
</tr>
</tbody>
</table>

- Outside of CMIC
 - Which will correct 98% of Single Errors.

- Only a small fraction of NX FPGA memory cells are used

Less than 10% of configuration bits used in typical design
Next SEE Campaigns

- Neutrons SEE testing of PicoSkyFT design at ISIS / ChipIR by Skylabs and University of Maribor (Si),
- Heavy ions campaigns to be performed by UFRGS (Br),
- 4th UCL/HIF campaign to be performed ourselves,
- New Radiation campaign, expected from CERN at PSI & CHARM,
- New Radiation campaign, expected from CTI (Br)
 - TID (60CO & X-Ray)
 - Heavy Ions
 - Protons
 - Neutrons
• Space Qualification is running at STM on both CQFP-352 & LGA-625,
• ESCC9000 qualification completion expected SEP18,
• and QML-V qualification completion DEC18,
• QML-V certification from DLA expected FEB19
NanoXplore Rad-Hard FPGA Roadmap

Step 2 – NG-Large

- **200 MHz**
- **35kLUT**
- **140kLUT**

- **Low-End FPGA (Just FPGA fabric)**
- **Mid-End FPGA with SERDES & Single-core ARM-R5**

Complexity

Unit Price

Logic Density
NG-Large replaces both MPU + Companion Chip

- 4x density vs NG-Medium
- Thanks to World-Wide recognized ARM Cortex-R5, optimized for High-Performance, Hard Real-Time applications.
Device Details

<table>
<thead>
<tr>
<th>Device</th>
<th>Details</th>
<th>NX1H140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>Equivalent System Gates</td>
<td>15 000 000</td>
</tr>
<tr>
<td></td>
<td>ASIC Gates</td>
<td>1 900 000</td>
</tr>
<tr>
<td>Logic Modules</td>
<td>Register</td>
<td>7x Tile + 4CGBs</td>
</tr>
<tr>
<td></td>
<td>LUT-4</td>
<td>384DFF487rows</td>
</tr>
<tr>
<td></td>
<td>Carry</td>
<td>408LUT487rows</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96CY487rows</td>
</tr>
<tr>
<td>Embedded RAM</td>
<td>DPRAM</td>
<td>9,888Mb</td>
</tr>
<tr>
<td></td>
<td>Core Register File</td>
<td>48RAM448Kb</td>
</tr>
<tr>
<td></td>
<td>Core Register File Bits</td>
<td>48RF27rows</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67264(16+6)bits</td>
</tr>
<tr>
<td>Additional Features</td>
<td>DSP Blocks</td>
<td>672 with ECC</td>
</tr>
<tr>
<td></td>
<td>SpaceWire link I/F 430Mbps</td>
<td>96DSP*4rows</td>
</tr>
<tr>
<td></td>
<td>SERDES Tx/Rx 6,25Gbps</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hard IP Processor core</td>
<td>4 Hex x 6 SERDES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARM Cortex-R5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Clocks</td>
<td>4 CLK * 8 CKC</td>
<td>32</td>
</tr>
<tr>
<td>Inputs / Outputs</td>
<td>I/O banks</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DDR PHY (11 IOBs)</td>
<td>10 Complex</td>
</tr>
<tr>
<td></td>
<td>SpaceWire PHY (8 IOBs)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x / Bank Complex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Packages - User I/Os</td>
<td>LG1752 & CG1752</td>
<td>42,5*42.5mm / 1mm</td>
</tr>
<tr>
<td></td>
<td>FF1752</td>
<td>42,5*42.5mm / 1mm</td>
</tr>
<tr>
<td></td>
<td>FF1152 (TBC)</td>
<td>35*35mm / 1mm</td>
</tr>
<tr>
<td>Power Supply</td>
<td>V_{core}: 1.2V</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td>V_{IO}: 1.5 or 1.8 or 2.5 or 3.3V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{Aux Analog}$: 2.5V</td>
<td></td>
</tr>
</tbody>
</table>

Note: ECC stands for Error Correcting Code.
- **SERDES developed in C65 Space, acc. Veloce contract,**
- **Take into account Space requirements, (esp JESD204B, SpF, ...),**
- **0.70 – 6.25 Gbps data rate,**
- **NG-Large will embed 4 Hex SERDES= 24 HSSLs.**

Hex architecture:
- HSSL blocks provide multi-protocol high-speed serial link capability with multi-rate support.
- Hex HSSLs are composed of 6 RX/TX lanes, a PLL, and a calibration circuit.
- Each transceiver lane includes the PMA and PCS hard macros.
- The SERDES block has configurable features such as data width (up to 80 bits in parallel), equalization and protocol dependent properties.

HSSL supported protocols:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Type</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESIstream</td>
<td>3,125 – 6.25Gbps</td>
<td>14B/16B</td>
</tr>
<tr>
<td>Serial RapidIO</td>
<td>3,125 – 6.25Gbps</td>
<td>8B/10B</td>
</tr>
<tr>
<td>JESD204B</td>
<td>3,125 – 6.25Gbps</td>
<td>8B/10B</td>
</tr>
<tr>
<td>SpaceFibre</td>
<td>3,125 – 6.25Gbps</td>
<td>8B/10B</td>
</tr>
</tbody>
</table>
This NX1H140TSP bitstream size depends on the application size (configuration) and the number of user Core RAM and Core Register Files to be initialized.
- Maximum configuration (100%): 26.46Mb

The maximum bitstream size is 26458 + (192 x 96.06) + (672 x 3.03) = 46938Kb
- So, it would require 3x NVRAM 16Mb or 1x NVRAM 64Mb.

Configuration download would me 118ms maximum with Flash QSPI @ 100MHz.

Most applications do not require to initialize all memories. A typical bitstream is less than 32Mb.
- These figures are just estimations. The actual size can be determined only by running the mapping software.
NG-Large forecast of Config SEU cross-section (LET)

Configuration Memory SEU
@ 25°C, VDDmin

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGsat (cm²/bit)</td>
<td>2.32E-09</td>
</tr>
<tr>
<td>L0 (MeV/(mg/cm²))</td>
<td>0.42243</td>
</tr>
<tr>
<td>W (MeV)</td>
<td>49.42755</td>
</tr>
<tr>
<td>s</td>
<td>4.91666</td>
</tr>
</tbody>
</table>

SER:
- SEU/config/day: 8.26E-13 SEU/config/day
- SEU/chip/day: 2.03E-05 SEU/chip/day
- SEU/chip/year: 7.4E-03 SEU/chip/year → SER > 100 years
NanoXplore Rad-Hard FPGA Roadmap

Step3 – NG-Ultra

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Complexity</th>
<th>Unit Price</th>
<th>Logic Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 MHz</td>
<td></td>
<td></td>
<td>35kLUT</td>
</tr>
<tr>
<td>500 MHz</td>
<td>Low-End FPGA (Just FPGA fabric)</td>
<td></td>
<td>140kLUT</td>
</tr>
<tr>
<td></td>
<td>Mid-End FPGA with SERDES & Single-core ARM-R5</td>
<td></td>
<td>550kLUT</td>
</tr>
</tbody>
</table>

High-End SoC FPGA
Based on Quad-cores ARM-R52
NG-Ultra becomes a System-On-Chip
- **4x FPGA density vs NG-Large**
- Full SoC architecture based on Quad-core ARM Cortex-R52, again optimized for High-Performance, Hard Real-Time applications.

SoC definition: It includes an Embedded Processor + Logics & RAM blocks, even analog circuitry.

Benefits: Reducing form factor, power consumption, heat dissipation, analog mixed signal integration
1st Rad Hardened SoC
High-End FPGA

- Performance:
 - Logic: 500MHz
 - DSP: 800MHz
 - Diff I/O: 1Gbps
 - SerDes: 12.5Gbs
 - ARM R52: 600MHz

- ECSS Class-1 qualification

- Hardening performance
 - Fully hardened by design
 - Fully SEU immune up to 60 MeV-cm² / mg
 - Total dose > 50 Krad TID
 - No single event latch up (LET > 60 MeV-cm² / mg)
NX FPGA Schedule

One Qualified Radiation Hardened FPGA device every year from 2018

2018

Q2CY18

NX1H35 TapeOut

Q4CY18

NX1H35 Proto

Q4CY18

NX1H35 QML-V

2019

Q2CY19

NX2H600 TapeOut

Q4CY19

NX2H600 Proto

Q4CY20

NX1H600 QML-V

2020

Q2CY19

NX1H140 TapeOut

Q4CY19

NX1H140 Proto

Q4CY19

NX1H140 QML-V

2016

Q3CY16

NX1H35 TapeOut

Q2CY17

NX1H35 Proto

Q4CY18

NX1H35 QML-V

2017

Q2CY18

NX1H140 TapeOut

Q4CY18

NX1H140 Proto

Q4CY19

NX1H140 QML-V

2018

Q4CY19

NX2H600 Proto

Q4CY20

NX1H600 QML-V

2019

Q4CY19

NX1H140 QML-V

2020

Q4CY20

NX1H600 QML-V

© 2018 Nanoxplore SAS Company
Conclusion
Thank you

Joël LE MAUFF
Head of Marketing & Sales
joel.lemauff@nanoxplore.com
www.nanoxplore.com

1 avenue de la Cristallerie - 92310 - SEVRES, France
Mobile: + 33 (0)6 8382 0053