NanoXplore

From eFPGA cores to RHBD System-On-Chip FPGA

4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18

NanoXplore Overview

- Created in 2010 by three veterans of semiconductor industry with long experience in the <u>design</u>, test and <u>debugging of FPGA cores</u>.
- Fabless semiconductor company headquarter in France
- R&D engineers in two offices in France:
 - Sèvres: Hardware developments
 - Montpellier: Software developments
- NanoXplore is a leader in the design of large scale programmable logic arrays for state of the art FPGA cores
- The company is focusing on 2 main activities:
 - Offer hard block embedded FPGA core IP (NX-eFPGA)
 - Developing rad-hard FPGA qualified for space applications (from BRAVE contract)

NanoXplore - FPGA architecture

1st of all, hereafter a basic FPGA architecture

• 2nd, there are 4 different ways to do interconnection:

FPGA market and Main Vendors

Source: Grand View Research Dec 2016

FPGA market and Main Vendors

Source: Grand View Research Dec 2016

 $\ensuremath{\textcircled{}^{\circ}}$ 2018 Nanoxplore SAS Company

NanoXplore – From eFPGA to RH FPGA

- NX has a strong experience in developing eFPGA cores on the most advanced technology nodes.
- **Hi-rel** markets (like space) require specific features (hardening, reliability, security etc) which are <u>not well addressed by market leaders</u> due to limited market opportunity: **Not true for NX**.
- European funding to support that initiative: CNES, ESA, EC, DGA, DGE, BPI ...
- Space market has many synergies with additional market such as Avionic, Military, Railway and Medical, even Automotive
 - Limited competition and clear technology advantages.

NanoXplore – Supply-Chain

Export Regulation

- ♦ NX RH FPGA devices are ITAR & EAR-free → No Dependance to USA.
- Classified 3A001.a.2.c according (EC)2015/2420 rules.

Process Technology *High Performance vs Low Power*

- Chip designers are challenged to choose between
 - Standard processes to meet performance goals or
 - Low Power processes to meet power goals.

- Parts designed for a fixed supply voltage and manufactured in the FF corner will have the highest frequency, have the most leakage and provide the best performance.
- Parts manufactured in the SS corner will have the slowest performance and have the least leakage and consume the least power.

Process Technology *STM C65 SPACE Low Power*

Features

Process

- STMicroelectronics C65SPACE (65nm CMOS)
- 3.3V IO gate oxide GO2 (5nm)
- 1.2V core gate oxide GO1 (1.8nm), triple VT transistors
- 7 copper metallization,5 thin and 2 thick
- Low-K inter-metallic dielectrics for thin metal layers
- High density SRAMs
- Compatible with flip-chip and wire bonding packaging

Radiations

- SEL-free up to LET = 60Mev/mg/cm2 at 125°C Tj and Vdd max
- SEE hardened library
- Tested up to a total dose of 300 krads (Si)

Reliability

- Library cells models with 20 years aging
- · Transistor models including aging alteration
- ESD better than:
- 2kV in HBM (Class 2 / MIL-STD-883H)
- 150∨ in MM
- 250∨ in CDM

Library offer

- Comprehensive library of standard logic with PVT and aging corners models
- IO pad libraries provide interfaces at 3.3V +/-0.30V, 2.5V+/-0.25V and 1.8V +/-0.15V
- High speed IO Pad LVDS supplied at 2.5V +/-0.25V up to 650Mbps
- Cold sparing IOs with single/double row support

Memories generation: single port SRAM, ROM, Dual port SRAMs, BIST library, EDAC library

- Wide-range PLLs 1.2GHz with multi-phase outputs
- 6.25Gbit/s high speed serial links (HSSL)

Design flow

- An ST customized design flow (RTL to GDS) invoking commercial solutions (Synopsys, Cadence, Mentor...) is available for partners and certified design houses:
 - Front-End kit from RTL to gates based
 - SiPKit for IO ring generation
 - FFKit for place and route
 - SignOffKit for final verification before tapeout
- For customer owned tools (COT) flow, ST provides the C65SPACE design platform along with the DRM and sign-off kit.

Description

The C65SPACE is fabricated on a proprietary 65nm, 7 metal layers CMOS process intended for use with a core voltage of $1.2V \pm 0.10V$. The ST standard-cells, memories and PLL have been designed and characterized to be compatible with each other.

Process Technology *STM C28 SPACE FD-SOI*

 FD-SOI substrates enable ultra-low-power features, unique cost/performance tradeoff, high-reliability and high-performance-mixed signal integration for a wide range of applications.

Source: http://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI/efficiency-at-all-levels.html

NX FPGAs are Rad Hardened

On top of it, Embedded Configuration Memory Integrity Check ("CMIC")

#12 4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18

CMIC= Configuration Memory Integrity (= Scrubber Ctrl)

• The CMIC is an <u>embedded engine performing automatic verification and repair of the</u> <u>configuration memory</u>.

- The CMIC period can be set by the user.
- At 50MHz, the minimum period is 5.3 ms and the maximum 65 days.
- The configuration memory scan takes 4ms (+1.3ms delay).
- The <u>CMIC reference memory is protected by ECC</u>.
- The CMIC does not need to access the external NVRAM when performing checks and repairs at run time.

NanoXplore Rad-Hard FPGA Roadmap

NX RH FPGA products positioning

 $\ensuremath{\textcircled{C}}$ 2018 Nanoxplore SAS Company

Programming Software: Nano map Overview

Nano map Programming Software

NanoXmap-v2 targets to reach Best Performances/Features by End-2018

• <u>H1-19</u>: NanoXmap v3, IP Library

◆ <u>H2-18</u>:

- NG-Large process on-going
- Embedded Logic Analyser
- Q2-18: NG-Medium process stabilized
- <u>Q3-17 to Q1-18</u>:
 - NanoXmap optimation process against
 - ✓ Logic density
 - ✓ Operation frequency (*)
- <u>2014 to Q3-17</u>:
 - NanoXmap development: database, algorithms, debug and flow set up from synthesis to bistream
 - Implementation of all FPGA blocks
- #17 4th SEFUW ESA/ESTEC Noordwijk (NL) 9/11apr18

(*) Acc. LP process

Next planned Nano map features

IP Library

- Planned in coming weeks
 - SpaceWire IP core
 - DDR Interface (DFI2.1)

In the pipe

- Parallel FIR filters generator,
- FIFO generator (Synchronous & Asynchronous),
- SIN/COS lookup table, even Direct Digital Synthetizer (DDS) or Numerically Controlled Oscillator (NCO),
- Complex Multiplier, Multiplier 24*30bits, Clock generator, etc.

From NX Eco-system

And you, what do you need?

- <u>3D-PLUS</u>: DDR Controller,
- Adentis/Maya Technology: Mil-Std-1553B BC/RT,
- <u>Skylabks</u>: PicoSkyFT-L, and PicoLIB (UART, Timer, I2C, GPIO, ...)
- <u>STAR Dundee</u>: SpaceWire, SpW CODEC, RMAP, Routing Switch, even High Perf. FFTs, Image Processing, Camera Interface, CA

Nano map Embedded Logic Analyser

- Embedded Logic Analyser IP core (currently in VHDL)
- Expected Q3-18

	Menu bar Configuration parameters bar: - Capture_width, capture_depht - Trigger mode (basic or basic_and_edges) - Capture_mode (pre_trigger_enable & value or multiple_windows) - Adv_trigger_enable (single level or two-level trigger) - User's defined additional buffering:0, 1 or 2			Status bar: - Waiting for command - Waiting for Adv_trigger - Waiting for trigger - Current capture window (for multiple_windows capture) - Loading captured data					
ſ	DATA_IN(15:0) ADDR_W(7:0)	x"3BAC" 251	-200 0	******	500 I			³ 1500	1800
User's defined signal names	CS WR DATA_OUT(15:0)	'1' '0' x"3BAC"	××××××××××××××××××××××××××××××××××××××	XXXXXXXXXXX Trigger position		Cursors		······	××××××××××××××××××××××××××××××××××××××
Radiv	ADDR_R(7:0) STATUS(3:0) ENA CNT(5:0)	b"0110" '1' 55							
Binary Hexadecimal Decimal Unsigned Decimal Signed	Active cursor C1 TRIG to C1 604 TRIG to C2 1095 TRIG to C3 1317 C1 to C2 491 C1 to C3 713 C2 to C3 222	Main trigge DATA_IN =: ADDR_W = C CS = '1' WE = R (risi DATA_OUT ADDR_R = I STATUS = b' ENA = 'X' CNT = X'XXX	r conditions x"0ADC" x"73" ng) = b"x000000000000000000000000000000000000	xxx*	60	4 1 Adv trigger conditions DATA_IN = x*0ADC* ADDR_W = x*73* CS = '1' WE = R (rising) DATA_OUT = b*xxxxxxxxxxxxxxxxxxxxxxxxxxxXXXXXXXXXX	095 13	117	

1st NX Rad-Hard SRAM-based FPGA

NanoXplore Rad-Hard FPGA Roadmap

Step1 – NG-Medium

 $\ensuremath{\textcircled{C}}$ 2018 Nanoxplore SAS Company

NG medium - Companium Chip

NG-MEDIUM is ideally a Companion Chip

- FPGA companion chips expand the capabilities of embedded host processors by adding missing host features and by offloading high-speed processing tasks.
- FPGA provides the ideal platform to add custom features tailored to specific project needs and much of the design can be re-used to support multiple processors.

NG medium Overview

СКС	I/O BANK COMPLEX - 30	СКБ	Device	Details	NX1H35S
		'	Capacity		
			ASIC Gates		550 000
E - 22		/O BA	Logic Modules	3x Tile + 2CGBs	
SIMPI		NK SI	Register	384DFF*28*3rows	32 256
BANK		MPLE	LUT-4	408LUT*28*3rows	34 272
I/0/I		- 30	Carry	96CY*28*3rows	8 064
			Embedded RAM		2,856Mb
			DPRAM	28RAM*2rows*48Kb	2.688K
	EPPPPPPPPPPPPPPPPPPPPPPP 384 DFF PPPPPP		Core Register File	28*2RF*3rows	168
e - 36		I/O B	Core Register File Bits	168*64*(16+6)bits	168K with ECC
nterfac		ANKS	Additional Features		
eam Ir	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IMPLE	DSP Blocks	56*2rows	112
Bit Str	64x16bits Register File	- 30	SpaceWire link I/F 400Mbps	CODEC	1
			High-Speed Serial Link 6,25Gbps	SERDES Tx/Rx	0
	RAW		Hard IP Processor core	ARM Cortex R5	0
			Clocks	4 CKG * 6 CCK	24
- 22		I/O 8	Inputs / Outputs		
MPLE		BANK	I/O banks	8 Complex + 5 Simple	13
NK SI		SIMPL		2x / Bank Complex	16
1/0 B/	┍╴┝╴┝╴┍╴┍╴┍╴┍╴┍╴┍╴┝╴┝╴┝╴┝╴┝╴┝╴┝╴┝╴┝╴┝╴┝	E - 30	SpaceWire PHY (8 IOBs)	2x / Bank Complex	16
			Packages – User I/Os		
			LG625 & CG625	29*29mm / 1mm	374
CKG		Cke	CQ352	48*48mm / 0,5mm	192
V _{core} :	1,2V - V _{IO} : 1,5 or 1,8 or 2,5 or 3,3V - V _{AuxAnalog} : 2,5V (I/Os, Comp, Thermal Se	nsors,)	FG625 (Jun18)	27*27mm / 1mm	374
23	N X 1 H 3 5 S 4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18	-	C Q 3 5 2	Company	NX

NG medium - Power consumption

- Static Power consumption depends of I/O configuration
- Dynamic Power consumption depends of the design
 - % of FPGA resources usage
 - Operating frequency
 - → Finally the power consumption is 0,50 µW/MHz/LUT+DFF
- What about

Quiescent VDDcore supply current is

- / 2 versus Antifuse FPGA
- / 2 versus Flash-based FPGA

/ **30+** versus biggest RHBD Sram-based FPGA

Symbol	Parameter	Min	Тур	Max	Unit	
IDD1V2	Quiescent* Core supply current	TBD	170	295	mA	
IDD2V5A	Quiescent* VDD2V5A supply current	-	251	-	mA	
IDD_SER	Quiescent* VDD_SERVICE supply current	TBD	20	TBD	mA	
Oujescent current is measured when the chip is turned on in safe-config mode without any design.						

NG medium - SpaceWire CODEC

Time-Code

Packet

- NG-MEDIUM includes
 1x Space Wire CODEC
- Two mode of operation:
 - bitstream download
 - User application
- Full hardware implementation
- Up to 430Mbps
- Standard common mode LVDS buffers

Space Wire

Time-Code

Packet

NG medium - SpaceWire CODEC in User Appls

- Packet Level transmits address, cargo and end_of_packet
- The soft IP implemented in the fabric can handle addressing and different protocols
- Time code and control signals are accessed through a serial interface

NG medium - SpaceWire Physical Interfaces

- The NG-MEDIUM includes 16 SW-PHY
- Clock recovery and data sampling up to 430Mbps
- 10 bits parallel to serial interface
- The soft IP shall implement the exchange and packet level
- Can be used to implement various protocol (RMAP, switch)

NG medium - DDR interface

- NG-MEDIUM includes
 16 DDR/DDR2 PHY (physical interfaces)
- The PHY includes the hardware to implement DDR transmission and reception up to 800Mbps
 - SSTL15/18/25 buffers
 - Differential DQS
 - Mixed analog / digital delay lines
 - Dynamic Phase Alignment sensor
 - DDR clock recovery
 - Delay Calibration
 - 4-bits serial / parallel interfaces
- The DDR IP includes
 - a DFI compliance block
 - a state machines for eye centering and initialization
 - a DDR controller

LGA625 29*29mm body, 1,00mm pitch

MQFP352 48*48mm body, 0,50mm pitch

NG medium Bitstream Size

- This NX1H35S bitstream size depends on the application size (configuration) and the number of user Core RAM and Core Register Files to be initialized.
 - Maximum configuration (100%): 6.46Mb
- The maximum bitstream size is 6460 + 56 x 96.06 + 168 x 3.03 = **12210Kb**
 - So, it would require 3x NVRAM 4Mb or 1x NVRAM 16Mb.
- Configuration download would me 240ms maximum with Flash SPI @ 50MHz.
- Most applications do not require to initialize all memories. A typical bitstream is less than 8Mb.
 - These figures are just estimations. The actual size can be determined only by running the mapping software.

Bitstream Download: Cfg Memory

- Recommended Space FPGA Configuration Memory
 - 3D-PLUS Serial NOR Flash TMR'ed 128Mb / 3DFS128M01VS2728
 - 128Mbit SPI FLASH Nor
 - Single Power Supply operation:
 - (3.3V read, erase and program operations).
 - Triple 128M-bit/16M-byte
 - Triple Modular Redundancy (TMR) integrated
 - Enhanced TID implementation
 - Supports standard SPI
 - 50MHz Normal
 - More than 100,000 erase/program cycles
 - More than 20-year data retention
 - Program 1 to 256 bytes per page
 - Program/Erase Suspend & Resume
 - Low Instruction Overhead Operations
 - Continuous Read 8/16/32/64-Byte burst
 - Selectable burst length
 - Available Temperature Range:
 - 0° C to 70° C -40° C to +85° C -55° C to +125° C

♦ Programmable Clock 50MHz ÷ n

NG medium Evaluation Kit

- The DevKit is an evaluation board to be used interactively through
 - JTAG, or
 - standalone from a **EEPROM board.**
- The board configuration mode is thus selected by <u>on-board jumpers</u>.
- A 10-pin HE10 connector is provided to receive an EEPROM memory board (Atmel Dump Mode EEPROM or standard SPI EEPROM).
- An optional SpaceWire connector allows **SpaceWire** configuration.

RADIATIONS SEE campaigns

- 4 SEE campaigns done in Q4CY16 and Q4CY17
 - OCT & NOV16:
 - 2 UCL/HIF campaigns,
 - 1st silicon, packaged in LGA625,
 - Static & Dynamic SEU/SET/SEFI testing.
 - *NOV17*:
 - PSI/PIF campaign
 - Latest silicon, packaged in LGA625.
 - *DEC17*
 - UCL/HIF campaign,
 - Latest silicon, packaged in LGA625,
 - Full SEE testing (SEL/SEU/SET/SEFI)

PAUL SCHERRER INSTITUT

#33 4th SEFUW – ESA/ESTEC Noordwijk (NL) – 9/11apr18

Radiations SEL testing

- Temperature 100° C, regulated by PID controller,
- Supply at their max value (+10%),
 - VDD1V2: 1.32V
 - VDD3V3: 3.63V
 - VDD2V5: 2.75V
 - VDD1V8: 1.98V
- Fluence over 10⁷ p/cm⁻² with the highest LET ¹²⁴Xe³⁵⁺
- NO LATCH-UP event was detected during the test period.

Heavy-Ions Cfg Memory Xsection

Protons *Cfg Memory Xsection*

- Xsection confidence intervals of 95% (alpha = 5%) are calculated for:
 - Relative fluence uncertainty of PSI is $\delta F/F = 5\%$.

NG medium Orbital Upset Rate

HEAVY IONS Weil	bull	PROTONS Weibull		
SIGsat (cm2/bit)	5.1852 E-09	SIGsat (cm2/bit)	4.84232 E-16	
Onset / L0 (MeV/(mg/cm ²))	0.11214	Onset / L0 MeV/(mg/cm ²)	29.99900	
Width (MeV)	36.4286	Width (MeV)	28.16281	
S	4.44737	S	0.47816	

Orbital Upset Rate calculation (CREME 96 model, OMERE software):

Solar min, AE8 electron model, AP8 proton model,

shielding = 100mils

sensitive volume thickness = 2µm

Mission profile	SER (bit/day)	SER (chip/day)
GEO (35870km)	2,05E-10	1,26E-3
MEO (1000km 26768km, 63,4°)	1,30E-09	7,98E-3
LEO1 Pol (800km, 800km, 98°)	2,57E-09	1,58E-2
LEO2 ISS (400km, 400km, 51,5°)	3,06E-10	1,88E-3

Outside of CMIC

- Which will correct 98% of Single Errors.
- Only a small fraction of NX FPGA memory cells are used

Less than 10%

of configuration bits used in typical design

Next SEE Campaigns

- Neutrons SEE testing of PicoSkyFT design at ISIS / ChipIR by • Apr-18 Skylabs and University of Maribor (Si),
- Heavy ions campaigns to be performed by UFRGS (Br),
- 4th UCL/HIF campaign to be performed ourselves,
- New Radiation campaign, expected from CERN at PSI & CHARM,
- New Radiation campaign, expected from CTI (Br)

- Heavy Ions
- Protons
- Neutrons

- ♦ May-18
- Jun-18
- H2-2018
- H2-2018

NG medium Space Qualification

- Space Qualification is running at STM on both CQFP-352 & LGA-625,
- ESCC9000 qualification completion expected SEP18,
- and QML-V qualification completion DEC18,
- QML-V certification from DLA expected FEB19 Delta ESCC Dtpk **Evaluation** DLA QCI -TM5005 Up HTOL 2000h Up 4000h Parts Mfr TM5004 ESD/LU TODAY SEPT18 DEC18 Pkg Dev Supply Chain Dev Q2-17 03-17 Q4-17 02-18 03-18 Q4-18 01-18

QML

ESCC

NanoXplore Rad-Hard FPGA Roadmap

Step2 – NG-Large

NG large - with Embedded Processor

- NG-Large replaces both MPU + Companion Chip
 - 4x density vs NG-Medium
 - Thanks to World-Wide recognized ARM Cortex-R5, optimized for High-Performance, Hard Real-Time applications.

		Device	Details	NX1H140
HSSL	UO BANK COMPLEX - 34 HSSL CKG	Capacity		15 000 000
in		ASIC Cator		1 000 000
	48 x TILE /	ASIC Gates	Zy Tilo + ACCPc	1 900 000
11		Pagistar	7X THE + 4CGBS	120.024
	48 x RAM 96 x DSP 408 LUT	Register	304DFF 40 /10WS	129 024
	384 DFF	LUI-4	408LU1*48*/fows	137 088
	48 x TILE [UT		96C Y 48 7 rows	32 256
		Embedded RAIVI		9,88810
	48 x RAM Register File	DPRAM	48RAM*4*48Kb	9.216K
	64X1b-bits Register File	Core Register File	48RF*2*7rows	672
	48 x TILE 幕百	Core Register File Bits	672*64*(16+6)bits	672K with ECO
	2×2×	Additional Features		
Ľ	48 x TILE	DSP Blocks	96DSP*4rows	384
1		SpaceWire link I/F 430Mbps		1
		SERDES Tx/Rx 6,25Gbps	4 Hex x 6 SERDES	24
	43 48 x RAM	Hard IP Processor core	ARM Cortex-R5	1
	∑ 56 / 56 1 56 1 56 1 56 1 56 1 56 1 56 1	Clocks	4 CLK * 8 CCK	32
Γ	ALU 48 × TILE 22	Inputs / Outputs		-
	48 x RAM	I/O banks	10 Complex + 14Simple	24
	96 x DSP 00	DDR PHY (11 IOBs)	2x / Bank Complex	20
[SpaceWire PHY (8 IOBs)	2x / Bank Complex	20
	- 24 X	Packages - User I/Os		
		LG1752 & CG1752	42,5*42,5mm / 1mm	684
. 1/01	3ANK COMPLEX - 34 UO BANK COMPLEX - 34 HSL CKG	FF1752	42,5*42,5mm / 1mm	684
-	Vro: 1.5 or 1.8 or 2.5 or 3.3V - VAUNADOLOG: 2.5V (I/OS, Comp. Thermal Sensors,)	FE1152 (TBC)	35*35mm/1mm	TBD

Η 2 Ν Х 1 S G 5 Q Т Ρ 1 4 0 7 1

- SERDES developed in C65 Space, acc. VELOCE contract,
- Take into account Space requirements, (esp JESD204B, SpF, ...),
- ◆ 0.70 6.25 Gbps data rate,

- NG-Large will embed 4 Hex SERDES = 24 HSSLs.
- Hex architecture:
 - HSSL blocks provide multi-protocol high-speed serial link capability with multi-rate support.
 - Hex HSSLs are composed of 6 RX/TX lanes, a PLL, and a calibration circuit.
 - Each transceiver lane includes the PMA and PCS hard macros.
 - The SERDES block has configurable features such as data width (up to 80 bits in parallel), equalization and protocol dependent properties.
- HSSL supported protocols:

Protocol	Туре	Encoding
ESIstream	3,125 – 6,25Gbps	14B/16B
Serial RapidIO	3,125 – 6,25Gbps	8B/10B
JESD204B	3,125 – 6,25Gbps	8B/10B
SpaceFibre	3,125 – 6,25Gbps	8B/10B

- This NX1H140TSP bitstream size depends on the application size (configuration) and the number of user Core RAM and Core Register Files to be initialized.
 - Maximum configuration (100%): 26.46Mb
- The maximum bitstream size is 26458 + (192 x 96.06) + (672 x 3.03) = **46938Kb**
 - So, it would require 3x NVRAM 16Mb or 1x NVRAM 64Mb.
- Configuration download would me 118ms maximum with Flash QSPI @ 100MHz.
- Most applications do not require to initialize all memories. A typical bitstream is less than 32Mb.
 - These figures are just estimations. The actual size can be determined only by running the mapping software.

NG large Cfg Memory Xsection

Weilbull parameter		Configuration Memory SEU	SER		
SIGsat (cm2/bit)	2.32E-09	SEU/config/day	8.26E-13 SEU/config/day		
L0 (MeV/(mg/cm ²))	49.42755	SEU/chip/day	2.03E-05 SEU/chip/day		
W (MeV)	4.91666	SEU/chip/year	7.4E-03 SEU/chip/year → SER > 100years		

NG-Large forecast of Config SEU cross-section(LET)

NanoXplore Rad-Hard FPGA Roadmap

Step3 – NG-Ultra

NG-Ultra becomes a System-On-Chip

• 4x FPGA density vs NG-Large

• Full SoC architecture based on Quad-core ARM Cortex-R52, again optimized for High-Performance. Hard Real-Time applications.

<u>SoC definition</u>: It includes an Embedded Processor + Logics & RAM blocks, even analog circuitry. <u>Benifits</u>: Reducing form factor, power consumption, heat dissipation, analog mixed signal integration

NX FPGA Schedule

One Qualified Radiation Hardened FPGA device every year from 2018

Conclusion

Thank you

Joël LE MAUFF Head of Marketing & Sales

joel.lemauff@nanoxplore.com www.nanoxplore.com

1 avenue de la Cristallerie - 92310 - SEVRES, France Mobile: + 33 (0)6 8382 0053

© 2018 Nanoxplore SAS Company

Constact

NanoXplore

www.NanoXplore.com