

Fault injection for space: FT-Unshades2 updates, experiences and roadmap

Hipólito Guzmán-Miranda María Muñoz-Quijada Luis Sanz

> SEFUW, 4th edition 9-11th April 2018

Introduction

- Fault Injection: a promising technique to compute the AVF (Architectural Vulnerability Factor) of electronic designs
- Benefit 1: AVF computation
- Benefit 2: Detect most sensitive regions
- Benefit 3: Hierarchical analysis
- Benefit 4: Verification of inserted protections
- Benefit 5: Detect collapsed TMRs
- Benefit 6: Detect defects in reset strategy
- Benefit 7: Check quality of workloads

Introduction

- Fault Injection: a promising technique to compute the AVF (Architectural Vulnerability Factor) of electronic designs
- Concern 1: learning curve, effort to use
- Concern 2: is it really accurate?
- Concern 3: what useful information can be extracted from the Fault Injection experiments?

Introduction

How does it work?

Design is prepared for the target FPGA (Virtex-5) A campaign consists of multiple runs Run: execution of test vectors + injection(s)

How to use it?

Implement a design using the standard design flow considering:

- Pinout fixed by the PCB (own tool generates .ucf file)
- Avoid DLLs and packing registers into I/Os
- Leave SelectMap port open, generate bit allocation file (.II)
- Generate a bitstream (.bit)

Stimuli set is obtained using a standard simulator

• VCD is converted to internal I/O format

Logged as hipolito -

💼 counter_8bit_pa	Step cycles	*: Hierarchy 🌮 Run 🛞 Debug	
	- 6 + -	2 - a	cl
□ 🔜 /data_out	1 cycle 5 cycles 10 cycles other until next event	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 00 01 02 03 04 05 06 05 04 03 02 01 00 01 02 03 04 05 06 05 04 03 02 01	ob xc cl
🗆 🔜 /reg		00 01 02 03 04 05 06 05 04 03 02 01 00 01 02 03 04 05 06 05 04 03 02 01	
🗆 📌 /rst_high			
l loo th		interface to launch	

campaigns and debug designs

1

Ready

3

Updates

Extension of the injection coverage:

- Injections can now be performed now in:
 - User Flip-flops
 - Block RAMs
 - Distributed RAMs
 - Configuration bits (essential bits)
 - Almost-blind injection

💼 prueba 🔛 Files			E
6			
°10 I0_I0_M3	Times (t):	2n:6n:1n	
°‰ I0_I1_M10	<i>№</i> 10_10_M5		
°10_11_M5	Charges (Q):	0.5p	
°13 I0_11_M0	Times (t):	1n:9n:0.5n	
°13 10_11_M7	<i> </i>		-
°13 I0_I1_M6	Charges (Q):	0.1p, 0.2p, 0.5p	
°© 10_11_M3	7 Times (t):	2n:6n:1n	
°12 10_11_M1	<i> </i>	0_M1	
°© I0_11_M8	Charges (Q):	0.05p, 0.1p	
	Times (t):	2n:6n:1n	
	Charges (Q):	0.5p	
	Times (t):	2n:6n:0.5n	
	₹ I0_I1_M4		
	Charges (Q):	0.5p	
	Z Times (1):	2n:8n:1n	
	<i> </i>		

 Injection in embedded RAMs important for microprocessor reliability assessment

Integration of the analog tool (AFTU) in the web-based user interface

Experiences

Analysis of system-level propagation of output damages

Evolve the typical cycle-by-cycle comparison model

-> take into account how the erroneous outputs affect the environment

 -> typically involves some kind of post-processing of the faulty output
 -> will vary depending on application

Experiences: Design of a zigbee physical layer tx

The design seemed very sensitive ...

Experiences: Design of a zigbee physical layer tx

... but, can the rx recover from faulty frames?

Experiences: Design of a zigbee physical layer tx

... but, can the rx recover from faulty frames?

Experiences: soPHI NoC

Fault analysis and classification of the Network-on-Chip of the space instrument soPHI (Solar Orbiter's Polarimetric and Helioseismic Imager)

Collaboration with T.U. Braunschweig Acknowledgement to:

H. Michel, H. Michalik, A. Dörflinger

H. Michel, H. Guzmán-Miranda, A. Dörflinger, H. Michalik and M. A. Echanove, "SEU fault classification by fault injection for an FPGA in the space instrument SOPHI," *2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS)*, Pasadena, CA, 2017, pp. 9-15.

PHI on Solar Orbiter

Solar orbiter

- ESA mission for sun observation
- Will orbit at 0.28 AU of the sun
- Launch scheduled for 2018

PHI instrument:

- Acquires 2k*2k images
- At different wavelengths and polarizations

Computes:

- Map of magnetic field vector
- Line-of-sight velocity in solar photosphere
- Very computation intensive tasks!

Data Processing Unit of PHI on Solar Orbiter

Image processing is done in the two Virtex-4 FPGAs Full TMR cannot be applied because of limited capacity

• We are testing the part of the NoC that goes into the Virtex-4 FPGAs

InterFPGA Interface

- READY signal indicates more data can be sent
- CTRL_CHR signal: control character
 - Null: no data transmitted in this clock cycle
 - End of Packet
 - Erroneous End of Packet
- 4 DATA signals (serialization of 16 bit network-on-chip)
 - Receiver can detect, if a packet does not add up to 16 bit words (*unmatched condition*)
- PARITY signal over all other signals
- SpaceWire like link initialization and restart
 - Restart on *unmatch*, parity error, time-out of READY signal

Fault Injection Results

- 45% of injected faults into essential bits lead to no error at all
- Classification of errors according to their observed output behavior
- InterFPGA interface
 - READY signal stuck (#1)
 - Other error on InterFPGA interface (#2)
 - READY signal stuck and other error on InterFPGA interface (#4)
- Register Output (#3)

Class	Description	%
0	No error	45.8%
1	READY stuck	29.8%
2	InterFPGA interface	3.9%
3	Register outputs	0.2%
4	READY & InterFPGA	19.9%
5	Others	0.4%

Fault Classification by Fault Injection Results in Simulation

Test-setup for detailed analysis of errors in categories #2, #4, #5:

Erroneous outputs generated by FT-UNSHADES are used as stimuli for simulating RX interface behavior in Control FPGA.

Errors in category #2 (InterFPGA)

- For almost all examined errors, the receiver detected an *unmatched* condition
 - \rightarrow Errors are detectable and Application Software can react appropriately
- There were also errors in the SocWire Packet including its header

Number	Unmatched	Further observation
1	Yes	Error in stream packet data
2	Yes	None
3	Yes	None
4	Yes	Error in Hardware ID
5	No	Error in SoCP instruction
6	Yes	Error in SoCP instruction
7	Yes	None
8	Yes	None
9	Yes	Error in SoCP instruction
10	Yes	Error in address

Errors in category #4 (InterFPGA and READY)

- All examined errors resulted in a link restart
 - \rightarrow Errors are detectable and Application Software can react appropriately

Number	Unmatched	Further observation
1	Yes	link restart
2	No	link restart
3	No	link restart
4	No	link restart
5	No	link restart

Errors in category #5 (other)

- All examined errors resulted in a link restart

 → Errors are detectable and Application Software can react appropriately
- For some cases, errors in stream data have been observed

Number	Unmatched	Further observation
1	No	link restart
2	Yes	link restart
3	Yes	link restart; error in stream data
4	Yes	link restart; error in stream data
5	Yes	link restart; error in stream data

Future work: FTU-VEGAS

New architecture and daughterboard targeting NanoXplore NG-MEDIUM FPGA

- Full PCIe functionality
- Onboard SRAMs for faster emulation & microprocessor analysis

(Under development)

Part of h2020 project VEGAS

European Commission $VEG \blacklozenge S$

Horizon 2020 European Union funding for Research & Innovation

Conclusions

- Non-instrumented injection increases the accuracy of the technique
 - Pending more comparisons with radiation experiments
- Web-based interface, documentation and email list for support reduces learning curve and effort
- System-level fault propagation analysis allows to extract very useful information for designers
 - -> real heat zones + how to better mitigate the faults

We want YOU to use it!

Just ask us! -> <u>hguzman@us.es</u>

More info on our website: <u>ftu.us.es</u>

Check our demo!