
Fault injection for space:
FT-Unshades2 updates,
experiences and roadmap

Hipólito Guzmán-Miranda
María Muñoz-Quijada
Luis Sanz

SEFUW, 4th edition
9-11th April 2018

Introduction

● Fault Injection: a promising technique to
compute the AVF (Architectural Vulnerability
Factor) of electronic designs

● Benefit 1: AVF computation
● Benefit 2: Detect most sensitive regions
● Benefit 3: Hierarchical analysis
● Benefit 4: Verification of inserted protections
● Benefit 5: Detect collapsed TMRs
● Benefit 6: Detect defects in reset strategy
● Benefit 7: Check quality of workloads

Introduction

● Fault Injection: a promising technique to
compute the AVF (Architectural Vulnerability
Factor) of electronic designs

● Concern 1: learning curve, effort to use
● Concern 2: is it really accurate?
● Concern 3: what useful information can be

extracted from the Fault Injection
experiments?

Introduction

FT-Unshades2:
Non-instrumented
FPGA-based fault
injection
Emulator
(SEUs).

Also an analog
utility, AFTU
(SETs).

Inputs Comparison

Design

FPGA

Design

FPGA

How does it work?

Design is prepared for the target FPGA (Virtex-5)
A campaign consists of multiple runs
Run: execution of test vectors + injection(s)

How to use it?

Implement a design using the standard design flow considering:
● Pinout fixed by the PCB (own tool generates .ucf file)
● Avoid DLLs and packing registers into I/Os
● Leave SelectMap port open, generate bit allocation file (.ll)
● Generate a bitstream (.bit)
Stimuli set is obtained using a standard simulator
● VCD is converted to internal I/O format

How to use it?

Use the web interface to launch
campaigns and debug designs

Updates

Extension of the injection coverage:
● Injections can now be performed now in:

○ User Flip-flops
○ Block RAMs
○ Distributed RAMs
○ Configuration bits (essential bits)

■ Almost-blind injection
● Injection in embedded RAMs important for

microprocessor reliability assessment
Integration of the analog tool (AFTU) in the
web-based user interface

Experiences

Analysis of system-level propagation of output
damages

Evolve the typical cycle-by-cycle comparison
model
 -> take into account how the erroneous
outputs affect the environment
 -> typically involves some kind of
post-processing of the faulty output
 -> will vary depending on application

Experiences: Design of a
zigbee physical layer tx

The design seemed very sensitive ...

Experiences: Design of a
zigbee physical layer tx

… but, can the rx recover from faulty frames?

Experiences: Design of a
zigbee physical layer tx

… but, can the rx recover from faulty frames?

Faulty output frames were
post-processed through the Matlab

model of the receiver

Experiences: soPHI NoC

Fault analysis and classification of the
Network-on-Chip of the space instrument
soPHI (Solar Orbiter’s Polarimetric and
Helioseismic Imager)

Collaboration with T.U. Braunschweig
Acknowledgement to:
H. Michel, H. Michalik, A. Dörflinger
H. Michel, H. Guzmán-Miranda, A. Dörflinger, H. Michalik and M. A. Echanove, "SEU fault
classification by fault injection for an FPGA in the space instrument SOPHI," 2017 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), Pasadena, CA, 2017, pp. 9-15.

PHI on Solar Orbiter
Solar orbiter
● ESA mission for sun observation
● Will orbit at 0.28 AU of the sun
● Launch scheduled for 2018

PHI instrument:
● Acquires 2k*2k images
● At different wavelengths and polarizations

Computes:
● Map of magnetic field vector
● Line-of-sight velocity in solar photosphere
● Very computation intensive tasks!

Data Processing Unit of PHI on
Solar Orbiter
Image processing is done in the two Virtex-4 FPGAs
Full TMR cannot be applied because of limited capacity

SoPHI Design in Fault Injection Tests
▪ We are testing the part of the NoC that goes into the Virtex-4 FPGAs

InterFPGA Interface
▪ READY signal indicates more data

can be sent

▪ CTRL_CHR signal: control character
▪ Null: no data transmitted in this clock cycle
▪ End of Packet
▪ Erroneous End of Packet

▪ 4 DATA signals (serialization of 16 bit network-on-chip)
▪ Receiver can detect, if a packet does not add up to 16 bit words (unmatched

condition)

▪ PARITY signal over all other signals

▪ SpaceWire like link initialization and restart
▪ Restart on unmatch, parity error, time-out of READY signal

▪ 45% of injected faults into essential
bits lead to no error at all

▪ Classification of errors according to
their observed output behavior

▪ InterFPGA interface
▪ READY signal stuck (#1)
▪ Other error on InterFPGA interface (#2)
▪ READY signal stuck and other error on

InterFPGA interface (#4)

▪ Register Output (#3)

Fault Injection
Results

Class Description %
0 No error 45.8%

1 READY stuck 29.8%

2 InterFPGA interface 3.9%

3 Register outputs 0.2%
4 READY & InterFPGA 19.9%

5 Others 0.4%

#1,2,4 #3

Fault Classification by
Fault Injection Results in Simulation
Test-setup for detailed analysis of errors in categories #2, #4, #5:

Erroneous outputs generated by FT-UNSHADES are used as
stimuli for simulating RX interface behavior in Control FPGA.

Errors in category #2
(InterFPGA)

▪ For almost all examined errors, the receiver detected an unmatched
condition
→ Errors are detectable and Application Software can react appropriately

▪ There were also errors in the SocWire Packet including its header

Errors in category #4
(InterFPGA and READY)

▪ All examined errors resulted in a link restart
→ Errors are detectable and Application Software can react appropriately

Errors in category #5
(other)

▪ All examined errors resulted in a link restart
→ Errors are detectable and Application Software can react appropriately

▪ For some cases, errors in stream data have been observed

Future work: FTU-VEGAS

New architecture and daughterboard targeting
NanoXplore NG-MEDIUM FPGA
● Full PCIe functionality
● Onboard SRAMs for faster

emulation & microprocessor analysis
(Under development)

Part of h2020 project VEGAS

Conclusions

● Non-instrumented injection increases the
accuracy of the technique
○ Pending more comparisons with radiation

experiments
● Web-based interface, documentation and

email list for support reduces learning curve
and effort

● System-level fault propagation analysis
allows to extract very useful information for
designers
○ -> real heat zones + how to better mitigate the faults

Conclusions

We want YOU to use it!

Just ask us! -> hguzman@us.es

More info on our website: ftu.us.es

Check our demo!

mailto:hguzman@us.es
http://ftu.us.es

