
110001011010011110100111011011010011110011

www.bitvis.no Your partner for SW and FPGA

UVVM
Setting a standard for VHDL

testbenches

ESA - SEFUW 2018

110001011010011110100111011011010011110011

 Some slides were skipped during the presentation in order to

keep to the schedule.
These are now included (and marked as such)

 The presentation had a lot of animation to ease the
understanding. This is not available in this PDF.
If you would like to have a copy of the animated presentation (as
a powerpoint-show-file), please send a request to
espen.tallaksen@bitvis.no , and I will send it to you.

 You may download the complete UVVM from
www.github.com/UVVM

 Note that the UVVM project on Github is being reorganised in
week 15 in order to allow community contributions.
Improved info will be published during this period.

Handout version

UVVM - Setting a standard... 2

Added for
handout version

http://www.github.com/UVVM

110001011010011110100111011011010011110011

 A huge majority of European FPGA designers are using VHDL

for both design and verification

• Some published surveys have strange numbers for VHDL usage.
These numbers are not even close to correct, and the survey
summaries often fail to mention the strong position that VHDL
has in Europe in particular.

 The incorrectness is most probably caused by the fact that the survey
is sent to an email list that is dominated by non-VHDL users - for
various reasons.

• Questions to participants at FPGA Kongress in Munich (probably
the largest FPGA conference in Europe) indicated that maybe as
many as 9 out of 10 was using VHDL...

VHDL

UVVM - Setting a standard... 3

Added for
handout version

www.bitvis.no UVVM - Setting a standard... 4

The 2016 Wilson Research Group
Functional Verification Study (1)

www.bitvis.no

The 2016 Wilson Research Group
Functional Verification Study (2)

UVVM - Setting a standard... 5

www.bitvis.no

Main Testbench scope

UVVM - Setting a standard... 6

 Purpose:

 To verify DUT requirements

 Challenge:

 Sufficient functional coverage with a minimum effort

 Testbench Requirements to meet challenge:

 Simple to write

 Simple to understand and modify - by anyone

 Simple to execute, debug and understand reports & results

Applies to any Testbench of any complexity

www.bitvis.no

Entry level : UVVM Utility Library

UVVM - Setting a standard... 7

Previously 'Bitvis Utility Library'. Free & open source since 2013

 A basic VHDL testbench infrastructure

• Logging and verbosity control

• Alert handling incl. optional positive acknowledge

• Extended string handling

• Simplified randomisation

• check_value(), check_value_in_range()

• check_stable(), await_stable()

• await_change(), await_value()

• report_alert_counters()

• BFM support and examples

• etc....

 Extremely low user threshold

 Advanced funct. when needed

 Well documented

 Good overview in less than an hour

 Download from Github: 3 min

 Include library in code: 1 min

 Log + Check + Report: 3 min

 Up and running: 7 min

www.bitvis.no

Simple data path TB

UVVM - Setting a standard... 8

p_apply_data p_fetch_data

p_main (test-sequencer)

BFM BFM

B
F
M

 ena_apply_data ena_fetch_data

Input
stimuli

Exp.
Output

Model

DUT
(e.g. Filter)

in out

May use Utility Library

check_value(***);

await_value(***);

etc....

report_alert_counters(***)

check_value(out_val, exp_val, ERROR, "Byte #" & to_string(cnt));

BV:===

BV: ERROR:

BV: 192 ns. filter_tb

BV: value was: 'xFF'. expected 'x00'.

BV: Byte #1053

BV:===

 ===

 BV: *** SUMMARY OF ALL ALERTS ***

 BV: ==

 BV: REGARDED EXPECTED IGNORED Comment?

 BV: NOTE : 0 0 0 ok

 BV: TB_NOTE : 0 0 0 ok

 BV: WARNING : 0 0 0 ok

 BV: TB_WARNING : 0 0 0 ok

 BV: MANUAL_CHECK : 0 0 0 ok

 BV: ERROR : 0 0 0 ok

 BV: TB_ERROR : 0 0 0 ok

 BV: FAILURE : 0 0 0 ok

 BV: TB_FAILURE : 0 0 0 ok

 BV: ==

 BV: >> No mismatch between counted and expected serious alerts

 BV: ==

www.bitvis.no

Simple data communication

UVVM - Setting a standard... 9

DUT (UART)

p_main (test-sequencer)

RX TX BFM BFM

uart_transmit(x"2A")

sbi_check(C_RX, x"2A")

sbi_write(C_TX, x"B3")
uart_expect(x"B3")

BV: 172 ns. uart_tb uart_transmit(x2A) on UART RX

BV: 192 ns. uart_tb sbi_check(x1, ==> x2A) completed. From UART RX

BV: 192 ns. uart_tb sbi_write(x2, ==> xB3) completed. To UART TX

BV: ERROR:

BV: 192 ns. uart_tb

BV: value was: 'xB2'. expected 'xB3'.

BV: (From uart_expect(xB3))

BV:==

May use Utility Library

and provided BFMs

Free, Open source BFMs:

UART, AXI4-lite, SPI, I2C,
Avalon MM, AXI4-stream,
GPIO, SBI, ...

www.bitvis.no

Quality and Efficiency enablers

UVVM - Setting a standard... 10

Structure & Architecture

Overview, Readability, Simplicity

Modifiability, Maintainability, Extendibility

Debuggability

Reusability

www.bitvis.no

 What is required to verify/test any complex DUT?

 Provide stimuli on interfaces

 Check outputs on interfaces

 Try to reach corner cases (Value and Cycle related)

 Must be able to control multiple interfaces simultaneously

But how? - for a simple DUT? - for a complex DUT (UART...?)

 Why not learn from SW (controlling HW)?
- A far more mature methodology!

• Issues commands at a high abstraction level

• Distributes tasks to the HW modules - then "forgets" them

 Controls HW outputs, Reads HW inputs and Configures the HW behaviour

 Then tasks are handled autonomously inside each HW module

 HW modules "scream" if something is wrong - or attention is needed

• Standardised interfaces, protocols, layers, registers, etc...

TB approach for complex DUTs

UVVM - Setting a standard... 11

www.bitvis.no

The SW/HW interface

UVVM - Setting a standard... 12

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

Intr
ctrl

CPU AXI4
AXI4-Lite
Avalon
etc..

Standard interface
Standard Protocol

SW
command
sequencer

 Inherently a lot of parallel activity and huge complexity

• SW/User cannot possibly control all the details inside each module at all times

• SW/user thus issues pre-defined commands (register setup)

 SW and Design Harness (HW) are totally separated

• Enables separate and independent work

• SW is often a magnitude more work than HW
 Important to allow SW development to be as simple as possible

• Thus often an abstraction layer in between to allow higher level programming

FPGA

www.bitvis.no

Mirror the SW/HW interface

UVVM - Setting a standard... 13

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

In
tr
ctr
l

CPU
(SW-seq)

AXI4
AXI4-Lite
Avalon
etc..

Standard interface
Standard Protocol

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

Intr
ctrl

VVC

VVC

VVC

VVC

VVC

VVC

VVC

VVC

Test
seq.

For both systems:

 Standard module control/status interface

 Standard protocol from sequencer to modules

 Standard commands in sequencer

SW/HW Design Environment

FPGA Verification Environment

www.bitvis.no

Verification component

UVVM - Setting a standard... 14

Test

Sequencer

SBI_VVC

SBI
VVC Methods

Illustration of a simple check-command from sequencer

Test sequencer may now continue

Interpreter

Command
Queue

Executor

SBI
BFM Methods

BFM

Check is now performed (Alert?)

Results
Container

Result stored for pot. future fetch()

sbi_check()

 sbi_check(SBI_VVCT, 1, x”1A4”, x”5B”, ERROR, “First byte”)

sbi_check(x”1A4”, x”5B”, ERROR, “First byte”

sbi_check()

UART
(DUT)

RX
Other

Ports

Clocks

Bus

interface

TX

www.bitvis.no

DUT Verification
- Three main development areas

Clock

Generation

Testcase

Sequencer

SBI_VVC

UART_TX_VVC

UART (DUT)

RX
Other

Ports

Clocks

Bus

interface

TX UART_RX_VVC

UVVM - Setting a standard... 15

 1: The complete Testbench with Test Harness

 2: The Verification Components

 3: The Central Test Sequencer

www.bitvis.no

1:The UVVM testbench/harness

UVVM - Setting a standard... 16

 UVVM is LEGO-like
Testbench

Test harness

 Build test harness

• Instantiate DUT and VVCs

• Connect VVCs to DUT

 Build TB with test sequencer

• Instantiate test harness

• Include VVC methods pkg
Connections included

• No additional connections

• VVCs could be inside DUT

DUT

VVC

VVC

VVC

Test
seq.

 Standard global interface throughout test harness

 Standard protocol from test sequencer to VVC

VVC

www.bitvis.no

SBI_VVC

(1:Testbench : Easy to implement & understand by anyone)

 Now - what about these VVCs?

2: VVC: VHDL Verification Component

UVVM - Setting a standard... 17

Testcase

Sequencer SBI_VVC

UART (DUT)

RX
Other Ports

Clocks

Bus interface

 TX

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
 Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
 & Execute transaction

Command
Queue

Same main architecture in every VVC

• >95% same code in Interpreters

• Same command queue

• 95% same code in Executors - apart from BFM calls

VVC Generation

UART BFM to UART_VVC:

less than 30 min

 Standard VVC internal architecture

www.bitvis.no

*_VVC

2: VVC: VHDL Verification Component

UVVM - Setting a standard... 18

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
 Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
 & Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

 Standard Queuing system

 Standard handling of multithreaded interfaces

 Standard control of parallel checkers

- Easy to add local sequencers
- Easy to add checkers/monitors/etc

- Easy to handle split transactions

- Easy to handle out of order execution

www.bitvis.no

(Based on very structured TB and VVCs)

 The sequencer is the most important part of the Testbench

 Most man-hours will be (or should be) spent here

 MUST be easy to understand, modify, maintain,

3: The test sequencer

UVVM - Setting a standard... 19

Clock

Generation

Testcase

Sequencer

SBI_VVC

UART_TX_VVC

UART (DUT)

RX
Other

Ports

Clocks

Bus

interface

TX UART_RX_VVC

UART_RX_VVC

Baudrate
Checker

www.bitvis.no

Test sequencer issues commands

1. Apply and check data:

Command sequence
- Transactions

UVVM - Setting a standard... 20

sbi_write(SBI_VVCT,1, C_ADDR_TX_DATA, x"A0", "Send byte UART TX");

uart_expect(UART_VVCT,1,RX x"A0", "Check byte from UART TX");

uart_transmit(UART_VVCT,1,TX x"A1", "Apply byte on UART RX");

wait for C_FRAME_PERIOD;

sbi_check(SBI_VVCT,1, C_ADDR_RX_DATA, x"A1", "Check UART RX byte");

 Standard command distribution syntax

 Standard handling of multiple instances

 Standard transfer of commands from sequencer to VVC

www.bitvis.no

Test sequencer issues commands

Commands for
synchronization

UVVM - Setting a standard... 21

await_value(rx_empty, '0', 0, 12*bit_period, ERROR, message);

 Standard synchronization between any process or VVC

 Standard timeout and messaging

insert_delay(SBI_VVCT,1, 2 * C_CLK_PERIOD);

await_completion(UART_VVCT,1,RX, 1 us, "Finish before");

await_unblock_flag(“my_flag“, 100 ns, “waiting for my_flag")

await_barrier(global_barrier, 100 us, “waiting for global barrier")

Included for
handout version

www.bitvis.no

Test sequencer issues commands

Commands for
VVC control

UVVM - Setting a standard... 22

flush_command_queue(SBI_VVCT, 1, “Flushing command queue”);

 Standard set of common commands for all VVCs

 Standard multicast and broadcast of common commands

fetch_result(SBI_VVCT,1, v_idx, v_data, v_ok, "Fetching data");

terminate_current_command(SBI_VVCT, 1, “Terminating command”);

get_last_received_cmd_idx(SBI_VVCT, 1);

terminate_all_commands (VVC_BROADCAST,”Terminating all commands”);

Included for
handout version

www.bitvis.no

Unified VHDL Verification Methodology

UVVM - Setting a standard... 23

Logging

Alert

Check
value

Check
stable

Awaits
Simple
Random

Advanced
random

Coverage

BFM
support

VVC
frame-
work

Complementary
 Unified VHDL Verif. Meth.

UVVM vs OSVVM (Randomisation and Coverage)

+ Various BFMs

+ Various VVCs

AXI4-lite, AXI4-stream,
Avalon MM, SPI, SBI,

UART, I2C, ...

Included for
handout version

www.bitvis.no

Logging

Alert

Check
value

Check
stable

Awaits
Simple
Random

Advanced
random

Coverage

BFM
support

VVC
frame-
work

UVVM - Setting a standard... 24

Complementary
 Unified VHDL Verif. Meth.

UVVM vs OSVVM (Randomisation and Coverage)

UVVM
VVC FW

BFMs &
VVCs

OSVVM
(R+C)

UVVM
Utillty
Library

Plug-in
OSVVM Random+Coverage
- with UVVM Utility Library
- inside UVVM BFMs
- inside UVVM VVCs
- in UVVM Test Sequencers

Unified VHDL Verification Methodology
Included for
handout version

www.bitvis.no

Randomisation and Functional Coverage
- Using OSVVM

UVVM - Setting a standard... 25

 Standard command structure for any new command

 Standard VVC architecture for executing any new command

SBI_VVC

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
 Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
 & Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

uart_transmit(UART_VVCT,1,TX, RANDOM, C_BUFFER_2, 256);

 Constrained random and Functional Coverage may be used anywhere

 May be started and stopped (manually or automatically)

uart_transmit(UART_VVCT,1,TX, FULL_COVERAGE, C_BUFFER_2);

uart_transmit(UART_VVCT,1,TX, x"5A");

www.bitvis.no UVVM - Setting a standard... 26

 Standard debugging structure

 Standard debugging control

SBI_VVC

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
 Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
 & Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

 Debugging TB is often more work than debugging the DUT...

 May follow the command through from test sequencer to execution

• And automatically print out logs - just by enabling verbosity

2045ns TB seq.(uvvm) ->uart_transmit(UART_VVC,1,TX, x"AA"): . [15]

2045ns UART_VVC,1,TX uart_transmit(UART_VVC,1,TX, x"AA"). Command received [15

2045ns UART_VVC,1,TX uart_transmit(UART_VVC,1,TX, x"AA") Will be executed [15]

3805ns UART_VVC,1,TX uart transmit(x"AA") completed. [15]

Debugging Commands and new VVCs
Included for handout version

www.bitvis.no

 ESA (European Space Agency) sponsors new UVVM extensions

 Intention: Improve FPGA quality and verification efficiency

 The extensions

• Scoreboarding

• Monitors

• Controlling randomisation and functional coverage

• Error injection

• Local sequencer

• Watchdog

• Controlling property checkers

• Req. vs Verif Matrix (Test coverage)

The ESA extensions

UVVM - Setting a standard... 27

www.bitvis.no

 Full functionality scoreboards

• With generic types

 Monitor added to provide actual data to model

• Actual data means data as seen on the actual interface

 Model fetches actual transactions from Monitor
(model is not known to monitor)

ESA-UVVM: SB+Monitor

UVVM - Setting a standard... 28

Seq.

SBI_VVC,1

DUT

MP_VVC,3

MP_VVC,2
MP_2

no-loss mux?
SBI

MP_VVC,1
MP 1

SBI
A

B
C

MP_1

MP_2
MP_3

MP_SB,2

MP_SB,3

SBI_SB

MP_model

M_T

MP = My Protocol

MP_MON,
1

MP_SB,1

SBI_MON,
1

Will be implemented

+ Error injection

+ Local sequencers

+ Control Constr. Rand

+ Control Funct. Cov.

+++

www.bitvis.no

S_T
S_C

 Hierarchical VVCs

• With their own Scoreboards

• Sequencer can access any level at any time

 Sequencer can send transaction "objects" directly to model

 Model can fetch transactions directly from VVC

• at any level

Potential further extension

UVVM - Setting a standard... 29

Seq. DUT

MP_VVC,3

MP_VVC,2
MP_2

no-loss mux?
SBI

UART_VVC,1 MP 1
SBI

A

B
C

MP_1

MP_2
MP_3

MP_SB,2

MP_SB,3

SBI_SB

MP_model

LV_T M_T MP_MON,
1 UART_SB

MP_VVC,2

MP_SB,2

HV_T

SBI_VVC,1

MP_VVC,1

MP_SB

SBI_MON,
1

Currently evaluated

www.bitvis.no

 More automation using Monitors

• (?) Plus option not to implement Monitors - to save time

• (?) Send transaction "object" from sequencer/VVC to model

 An even more structured TB architecture

• Full functionality scoreboards

• Prepared integration and interfacing of models

• (?) Hierarchical VVCs

 Structured error injection, watchdogs, etc...

 Standardised control of Constrained Random ++

 A unified full VHDL verification environment

 Contributions from the VHDL community...

The results of the ESA extensions

UVVM - Setting a standard... 30

Included for
handout version

www.bitvis.no

 Lego-like Test harness

 Reusable VVCs

 Reusable VVC structure

 Simple synchronisation

 handle any number of interfaces in a structured manner

 Clear sequence of event - almost like pseudo code

 Test cases are simple to understand

 simple debugging of TB and DUT

UVVM: Structure & Overview & Reuse

UVVM - Setting a standard... 31

Central

Testcase

Sequencer

VVC SBI

SPI

P3

ETH ETH

P1

P2

UART

DMA

Intr
ctrl

VVC

VVC

VVC

VVC

VVC

VVC

VVC

Non UVVM BFMs and VVCs may easily be wrapped to UVVM

UVVM BFMs and VVCs may be used anywhere - exactly as is

www.bitvis.no

Wouldn't it be nice if we could ...

 handle any number of interfaces in a structured manner?

 reuse major TB elements between module TBs?

 reuse major module TB elements in the FPGA TB?

 read the test sequencer almost as simple pseudo code?

 recognise the verification spec. in the test sequencer?

 understand the sequence of event
- just from looking at the test sequencer

 allow simple debugging of TB and DUT

Wishful thinking

UVVM - Setting a standard... 32









UVVM



Included for
handout version

www.bitvis.no

 Same simple TB architecture independent of designer

 Same VVC architecture independent of designer

• And almost independent of Interface

 Same commands from one VVC to another

• Same behaviour and response from one VVC to another

• Even simple for SW and HW designers to write and understand

 Easy to make new VVCs

• And for others to use it - in all different ways

 Established debug-mechanisms and support

• Allows much faster and better debugging

 Same synchronization mechanism between any VVC and TB

 Easy to reuse major TB parts from one TB to another

 Easy to share VVCs between anyone

Benefits of standardisation

UVVM - Setting a standard... 33

Included for
handout version

www.bitvis.no

 Unprioritised further VVC roadmap

• VVC Wishbone

• VVC Avalon ST

• VVCs for Clock generator and reset

• more....

• + Community VIPs

 UVVM VVC functionality

• More examples on complex constrained random and coverage

• More support for error injection and monitors

• More advanced scoreboards

• Standard solutions for pipelined transactions and out-of-order

Roadmap

UVVM - Setting a standard... 34

Available UVVM Open
Source BFMs & VVCs:

AXI4-lite
AXI4-stream

SBI
SPI
I2C

Avalon MM
UART
GPIO

Included for
handout version

www.bitvis.no

UVVM is gaining momentum

UVVM - Setting a standard... 35

3-day course on 'Advanced VHDL Verification - Made simple'

- Munich, Germany, June 19-21 (coming on bitvis.no soon)
- Stockholm/Gothenburg, Sweden, Sept. TBD
- Ankara, Turkey, Oct/Nov TBD

More to come... Info soon under www.bitvis.no

 UVVM VVC Framework - Released February 2016

 Great feedback from users

 Recommended by Doulos for Testbench Architecture

 Being used world wide

 with courses on 3 continents

 ESA (European Space Agency) sponsors extension

http://www.bitvis.no/

www.bitvis.no

Your partner for Embedded software and FPGA

Quality in every bit

Make better testbenches - and save time

Let's start sharing VVCs

https://github.com/UVVM

www.bitvis.no UVVM - Setting a standard... 37

Achieve the key aspects for ANY good testbench:

Overview - Readability - Extensibility - Maintainability - Reuse

 Using sub-programs and other important VHDL constructs for verification

 Making self-checking testbenches

 Using logging and alert handling

 Applying value and stability checkers and waiting with a timeout for events

 Making your own BFM – and adding features to speed up verification and debugging

 Making directed and constrained random tests – knowing where to use what - or a mix

 Learning to use OSVVM randomization and functional coverage

 Applying OSVVM coverage driven tests in a controlled manner

 Using verification components and advanced transactions (TLM) for complex scenarios

 Target data and cycle related corner cases and verifying them

 Learning to use UVVM to speed up testbench writing and the verification process

Making an easily understandable and modifiable testbench even for really complex verification
– and do this in a way that even SW and HW developers can understand them.

3-day course: Accelerating FPGA VHDL Verification

More info under www.bitvis.no

Included for
handout version

http://www.bitvis.no/

