Single Event Characterization of a Xilinx UltraScale+ MP-SoC FPGA

Thomas LANGE, Maximilien GLORIEUX, Adrian EVANS, A-Duong IN, Thierry BONNOIT, Dan ALEXANDRESCU
 iRoC Technologies – France

Cesar BOATELLA POLO, Carlos URBINA ORTEGA, Veronique FERLET-CAVROIS
 ESA/ESTEC – Netherlands

Maris TALI, Ruben GARCIA ALIA
 CERN – Switzerland/France

SpacE FPGA Users Workshop – SEFUW 2018
 Tuesday, April 10th 2018

ESA TRP Nr.: 4000116569
Outline

- Motivation
- Test Setup
- Facilities
- Test Results
- Conclusion and Future Work
ESA project to study radiation sensitivity of components operating in JUICE environment

- 3 classes of devices tested
 - Commercial SRAMs
 - SRAM-Based FPGA
 - CPU/SoC

- All devices tested under
 - ✓ Heavy Ions (UCL, CERN H8)
 - ✓ High Energy Electrons (VESPER)
 - ✗ High Energy Protons (PSI in May 2018)
 - ✓ Low Energy Protons (RADEF)
Motivation – XCZU3EG Overview (1)

- Latest generation Xilinx MP-SoC
 - Ultrascale architecture FPGA
 - ARM based processing system (4x A53 + 2x R5)
 - Manufactured in TSMC FinFET 16nm Technology
Characteristics of Zynq Ultrascale+ EG devices

<table>
<thead>
<tr>
<th>Device Name</th>
<th>ZU2EG</th>
<th>ZU3EG</th>
<th>ZU4EG</th>
<th>ZU5EG</th>
<th>ZU6EG</th>
<th>ZU7EG</th>
<th>ZU9EG</th>
<th>ZU11EG</th>
<th>ZU15EG</th>
<th>ZU17EG</th>
<th>ZU19EG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Processor Core</td>
<td></td>
</tr>
<tr>
<td>Processor Unit</td>
<td>Memory w/ECC</td>
<td></td>
</tr>
<tr>
<td>Real-Time</td>
<td>Processor Core</td>
<td></td>
</tr>
<tr>
<td>Processor Unit</td>
<td>Memory w/ECC</td>
<td></td>
</tr>
<tr>
<td>Graphic & Video</td>
<td>Graphics Processing Unit</td>
<td></td>
</tr>
<tr>
<td>Acceleration</td>
<td>Memory</td>
<td></td>
</tr>
<tr>
<td>External Memory</td>
<td>Dynamic Memory Interface</td>
<td></td>
</tr>
<tr>
<td>Processing System (PS)</td>
<td>Static Memory Interfaces</td>
<td></td>
</tr>
<tr>
<td>Connectivity</td>
<td>High-Speed Connectivity</td>
<td></td>
</tr>
<tr>
<td>General Connectivity</td>
<td>Power Management</td>
<td></td>
</tr>
<tr>
<td>Integrated Block</td>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Functionality</td>
<td>System Monitor</td>
<td></td>
</tr>
<tr>
<td>PS to PL Interface</td>
<td>12 x 32/64/128b AXI Ports</td>
<td></td>
</tr>
<tr>
<td>Programmable Functionality</td>
<td>System Logic Cells (K)</td>
<td>103</td>
<td>154</td>
<td>192</td>
<td>256</td>
<td>469</td>
<td>504</td>
<td>600</td>
<td>653</td>
<td>747</td>
<td>926</td>
</tr>
<tr>
<td></td>
<td>CLB Flip-Flops (K)</td>
<td>94</td>
<td>141</td>
<td>176</td>
<td>234</td>
<td>429</td>
<td>461</td>
<td>548</td>
<td>597</td>
<td>682</td>
<td>847</td>
</tr>
<tr>
<td></td>
<td>CLB LUTs (K)</td>
<td>47</td>
<td>71</td>
<td>88</td>
<td>117</td>
<td>215</td>
<td>230</td>
<td>274</td>
<td>299</td>
<td>341</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>Max. Distributed RAM (Mb)</td>
<td>1.2</td>
<td>1.8</td>
<td>2.6</td>
<td>3.5</td>
<td>6.9</td>
<td>6.2</td>
<td>8.8</td>
<td>9.1</td>
<td>11.3</td>
<td>8.0</td>
</tr>
<tr>
<td>Memory</td>
<td>Total Block RAM (Mb)</td>
<td>5.3</td>
<td>7.6</td>
<td>4.5</td>
<td>5.1</td>
<td>25.1</td>
<td>11.0</td>
<td>32.1</td>
<td>21.1</td>
<td>26.2</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>UltraRAM (Mb)</td>
<td>-</td>
<td>-</td>
<td>13.5</td>
<td>18.0</td>
<td>-</td>
<td>27.0</td>
<td>-</td>
<td>22.5</td>
<td>31.5</td>
<td>28.7</td>
</tr>
<tr>
<td>Clocking</td>
<td>Clock Management Tiles (CMTs)</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Programmable Logic (PL)</td>
<td>DSP Slices</td>
<td>240</td>
<td>360</td>
<td>728</td>
<td>1,248</td>
<td>1,973</td>
<td>1,728</td>
<td>2,520</td>
<td>2,928</td>
<td>3,528</td>
<td>1,590</td>
</tr>
<tr>
<td></td>
<td>PCI Express® Gen 3x16 / Gen4x8</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>15G Interlaken</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>100G Ethernet MAC/PCS w/RS-PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AMS - System Monitor</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Transceivers</td>
<td>GTH 16.3Gb/s Transceivers</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>16</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>GTY 32.75Gb/s Transceivers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Speed Grades</td>
<td>Extended[2]</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-L-3</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-L-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-L-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Setup – Requirements

- SEL monitoring on all 19 power domains

- SEU characterisation of
 - FPGA
 - Configuration RAM (CRAM)
 - Block RAM (BRAM) & Distributed RAM (DistRAM)
 - Flip-flops (FFs)

 - Processing system
 - Single thread benchmark execution on R5 processor core
 - Coremark and PI FFT benchmark
 - ECC enabled on all internal memories
Test Setup – Test Board Overview

- FPGA SW&LED
- USB UART
- DDR3 SODIM module
- SD Memory Card
- JTAG interface
- QSPI flash
- Boot mode selection SW
- Processor SW&LED
- Shunt resistors (current monitoring)
- Power supplies
- Tester interface
Test Setup – General Test Setup
Test Setup – Package Preparation

- **Flip-chip die**
 - Die directly interfaced on the PCB package
 - Radiation from the backside
 - Die thinned to 73 µm
 - *Xenon* penetration range 73.1 µm

Available particles and penetration range at UCL HIF

<table>
<thead>
<tr>
<th>Ion, Mass</th>
<th>DUT energy [MeV]</th>
<th>Range [µm Si]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C $^{4+}$</td>
<td>131</td>
<td>269.3</td>
</tr>
<tr>
<td>22Ne $^{7+}$</td>
<td>238</td>
<td>202.0</td>
</tr>
<tr>
<td>27Al $^{8+}$</td>
<td>250</td>
<td>131.2</td>
</tr>
<tr>
<td>40Ar $^{12+}$</td>
<td>379</td>
<td>120.5</td>
</tr>
<tr>
<td>53Cr $^{16+}$</td>
<td>513</td>
<td>107.6</td>
</tr>
<tr>
<td>58Ni $^{18+}$</td>
<td>582</td>
<td>100.5</td>
</tr>
<tr>
<td>84Kr $^{25+}$</td>
<td>769</td>
<td>94.2</td>
</tr>
<tr>
<td>124Xe $^{35+}$</td>
<td>995</td>
<td>73.1</td>
</tr>
</tbody>
</table>
Test Setup – FPGA Test Methodologies

- **CRAM** scrubbing with SEM-IP
 - Reflects real usage of FPGA in space application
 - Avoid accumulation of CRAM upsets
 - Live CRAM error reporting during the test (UART output of SEM-IP sent via tester)

- **BRAM** and **DistRAM**
 - Build as two memory arrays
 - Accessible via external pins (address + data)
 - Tester generates WRITE/READ patterns (similar to a SRAM component test)

- Two **flip-flop chain** configurations
 - Standard FF chain
 - XTMR chain

<table>
<thead>
<tr>
<th>Instance</th>
<th>Standard FF Chain</th>
<th>+ TMR Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAM</td>
<td>28 Mb</td>
<td>28 Mb</td>
</tr>
<tr>
<td>BRAM</td>
<td>7.8 Mb</td>
<td>7.8 Mb</td>
</tr>
<tr>
<td>DistRAM</td>
<td>0.88 Mb</td>
<td>0.88 Mb</td>
</tr>
<tr>
<td>FF</td>
<td>96 000</td>
<td>48 000</td>
</tr>
<tr>
<td>TMR</td>
<td>0</td>
<td>16 000</td>
</tr>
</tbody>
</table>

10/04/2018

SEFUW 2018
Test Setup – FPGA Test Methodologies

- **CRAM scrub**
 - Reflects real usage of FPGA in space application
 - Avoid accumulation
 - Live CRAM error reporting during the test (UART output of SEM-IP sent via tester)

- **BRAM and DistRAM**
 - Build as two memory arrays
 - Accessible via external pins (address + data)
 - Tester generates WRITE/READ patterns (similar to a SRAM component test)

- **Two flip-flop chain configurations**
 - Standard FF chain
 - XTMR chain

<table>
<thead>
<tr>
<th>Instance</th>
<th>Standard FF Chain</th>
<th>+ TMR Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAM</td>
<td>28 Mb</td>
<td>28 Mb</td>
</tr>
<tr>
<td>BRAM</td>
<td>7.8 Mb</td>
<td>7.8 Mb</td>
</tr>
<tr>
<td>DistRAM</td>
<td>0.88 Mb</td>
<td>0.88 Mb</td>
</tr>
<tr>
<td>FF</td>
<td>96 000</td>
<td>48 000</td>
</tr>
<tr>
<td>TMR</td>
<td>0</td>
<td>16 000</td>
</tr>
</tbody>
</table>
Heavy Ions – Facilities

- **UCL HIF**
 - Typical fluence per condition:
 - Carbon (LET = 1.3 MeV/mg/cm²): 5e6 hi/cm²
 - Xenon (LET = 62.5 MeV/mg/cm²): 1.5e5 hi/cm²

- **CERN H8 ultra-high energy Xe beam**
 - Energy = 30 GeV/amu ➔ Ion range ≈ 6 cm
 - LET = 3.7 MeV/mg/cm²
 - Typical fluence per condition: 1e5 hi/cm²

- **Facility comparison CERN H8 vs UCL HIF**

<table>
<thead>
<tr>
<th></th>
<th>CERN H8</th>
<th>UCL HIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td>• Test in air</td>
<td>• Relatively constant flux</td>
</tr>
<tr>
<td></td>
<td>• No need to de-lid / thin devices</td>
<td>• Moving stage in the vacuum chamber</td>
</tr>
<tr>
<td></td>
<td>• Up to 90° tilt angles</td>
<td>• Accurate alignment (LASER)</td>
</tr>
<tr>
<td>Cons</td>
<td>• Beam delivered as spills</td>
<td>• Vacuum test complexities</td>
</tr>
<tr>
<td></td>
<td>- Deadtime computation complexities</td>
<td>• Device preparation difficulties</td>
</tr>
<tr>
<td></td>
<td>- Less test efficiency</td>
<td>• Effective LET depends on device thickness</td>
</tr>
<tr>
<td></td>
<td>• Lack of information about flux vs time</td>
<td>• Limited cable to control room</td>
</tr>
<tr>
<td></td>
<td>• DUT alignment accuracy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Limited cable to control room</td>
<td></td>
</tr>
</tbody>
</table>
Heavy Ions – SEL Test Results

- **VCC_AUX / VCC_PSAUX**

 - [Graph for VCC_AUX / VCC_PSAUX]

- **VCC_AUXIO**

 - [Graph for VCC_AUXIO]
Heavy Ions – SEU Test Results (1)

- Configuration RAM

- Xilinx scaling family trends

Based on [7]
Heavy Ions – SEU Test Results (2)

- BRAM and Distributed RAM

- User Flip-Flops
Heavy Ions – HD IO Hard Failure

- Observed permanent stuck at failure of HD IOs (operation at 3.3V) input
 - Output driver is still operating correctly
 - Input is stuck at 1 or 0
 - Occurred during high LET tests (Xe and Ni)
 - Does not seem to be contention with tester
 - 100 Ohm resistor connected between
High-Energy Electron – Facility

- **VESPER**
 - Energy Range: 60 – 200 MeV
 - Flux: $7 \times 10^6 – 1 \times 10^8$ e-/cm2/s
 - Beam delivered as pulses, with 0.8-10 Hz frequency
 - Beam size: 2 cm x 2 cm

- **SEE mechanisms**
 - Indirect ionization
 - Direct ionization is negligible
 $(LET \approx 1 \times 10^{-3}$ MeV/cm2/mg)
HE Electron – SEL Test Results

- No SEL events observed on any power domain

![Graph showing SEL XS UL (cm²) vs. Electron Energy (MeV)]
HE Electron – SEU Test Results

- Configuration RAM

- BRAM and Distributed RAM
Radiation test results for the Xilinx Ultrascale+ ZU3EG MP-SoC FPGA

- Implemented test setup
- Overview of used test facilities
- SEE sensitivity
 - Standard and ultra-high energy heavy-ion
 - High-energy electron

Further tests and analysis

- Low Energy Protons (RADEF)
- High Energy Protons (PSI)

Deeper analysis of the Processing System
Thank You!

Questions?

Thomas Lange thomas.lange@iroctech.com
Maximilien Glorieux maximilien.glorieux@iroctech.com
References

http://sci.esa.int/science-e-media/img/cd/JUICE_mission_1280.jpg

[2] Zynq UltraScale+ MPSoC Product Advantages

[4] Heavy Ion SEE Testing of XC7K70T, Kintex7 family FPGA from Xilinx Presented by Pierre GARCIA
https://indico.esa.int/indico/event/130/session/14/contribution/42/material/slides/0.pdf

[5] Available particles inside the cocktail
http://www.cyc.ucl.ac.be/HIF/HIF.php

[6] Xilinx TMRTool Industry’s First Triple Modular Redundancy Development Tool for Re-Configurable FPGAs