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Why do we need on-board compression? 
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‣ While the resolution of the remote sensors, and consequently the data 

rates continue to increase, the available downlink bandwidth is 

comparatively stable.  

‣ Solution  to apply compression on-board the satellites. 

‣ Lossless compression allows for reducing the data volume without 

compromising the data integrity. 

‣ Lossy compression  yields higher compression ratios introducing losses in 

the data. 
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Standard Algorithms of the CCSDS 
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‣ CCSDS image compression algorithms (Consultative Committee for 

Space Data Systems) 

 

CCSDS 121 

‣ Universal lossless 

based on Rice 

codes. 

 

CCSDS 122 

‣ Lossless or lossy 

2D compressor 

based on DWT. 

 

CCSDS 123 

‣ Multi/hyperspectral 

compressor based on 

prediction. 
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‣ Lossless compression 

• Data compression: CCSDS121. 

• Multispectral & Hyperspectral compression: 

CCSDS123 

− Block coder (Golomb). 

− Rice coder (CCSDS123). 

• Part of ESA’s IP core’s Repository and CoBham 

Gaisler IP library. 

‣ Lossy compression 

• CCSDS123 lossy extension. 

• HyperLCA: IUMA lossy algorithm (including 

multispectral & Hyperspectral fusion). 

Compression IP cores developed 
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‣ ESA TRP: extension of the SHyLoC IP Cores (CCSDS121 and 

CCSDS123) 

• CCSDS 121 and CCSDS 1123 lossless compression IP cores. 

• On-going development: 

− Complete CCSDS121 IP to be able to compress independently. 

− New memory architectures for the CCSDS123 IP improving the 

throughput. 

− Compatible with SRAM-based FPGAs (Xilinx Virtex V, NanoXplore 

NG-MEDIUM). 

‣ ENABLE-S3: Reconfigurable Video Processor for Space 

• Consortium: GMV, ITI, TAS-E, ULPGC, UPM. 

• Fault-tolerant and reconfigurable lossy compression over 

Xilinx Zynq UltraScale+. 

‣ REBECCA: 

• HyperLCA compression using OpenCL heterogeneous 

computing over Altera Stratix and nVidia GPUs. 

Ongoing Projects 
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CCSDS121 Standard 
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‣ Block-adaptive encoder: 

• A variable-length code that utilizes Rice’s 

adaptive coding technique.  

• For a block of J samples, the coder 

evaluates the option that yields the 

shortest codeword. 

• J is a configurable value (8, 16, 32, 64). 

• Basic code: FS codeword. 



CCSDS123 Standard 
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‣ Prediction-based using neighboring samples in the 

same band and in P previous bands (local sum and 

local differences).  

‣ The prediction is computed from the dot product 

(𝑑  ) between the local differences vector (𝑈) and a 

weight vector (𝑊)     𝑑 = 𝑊𝑇
𝑧,𝑦,𝑥 ∙ 𝑈𝑧,𝑦,𝑥 

‣ Prediction residuals are mapped and then encoded 

using a variable-length binary codeword. 

‣ The variable-length codes are adaptively selected 

based on statistics that are updated after each 

sample is encoded. 

 

 

 

 

 



CCSDS123 architectural solutions 
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‣ Different architectures, depending on the sensor type: BIP, BSQ, BIL.  

‣ For BIP and BIL orders, two different memory approaches: 

• Mem architecture: uses external memory to store intermediate values for 

compression  Lower resource utilization. 

• Base architecture: stores the intermediate results only in the FPGA internal 

memory  Better throughput.  

‣ Different storage requirements depending on the compression order, image 

size and P (number of bands used for prediction). 

• Different achievable throughput: 

− BIP  allows for parallelization of prediction operations of a sample in all bands. 

− BSQ  prediction finished before starting the compression of samples in the same band. 

− BIL  mixed situation. 

 



CCSDS123 Lossy Extension 
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‣ Hyperspectral Compression algorithm, works in near-lossless to lossy range*. 

‣ Able to adapt losses according to the user-selected bit rate (rate control). 

‣ Leverages predictor and entropy coder from the CCSDS-123.0 lossless 

compressor.    

‣ Rate control will be included in the standard as an option. 

 

*D. Valsesia and E. Magli, "A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral 

Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 10, pp. 6341-6355, Oct. 2014. 
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RTL design flow 
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‣ All the design and verification steps 

are performed at RTL level: 

• Full control of all implementation 

details (cycle-accurate design). 

• Validation and optimization after RTL 

design. 

• Large design times for complex 

systems. 

• Costly specification refinement 

(necessity of partially re-designed).  
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Mixed design flow 
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‣ IP cores modelled in a high-level 

programming language (C/C++) as 

previous stage of a VHDL 

implementation. 

‣ Advantages of having a higher 

abstraction model: 

• Numerous iterations for architecture 

exploration in a short term. 

• Generate specifications that lead to 

efficient implementations.  

• Design optimization at an early 

stage.  

• Validate hardware against software 

before the RTL description is 

modelled. 

• HW/SW co-design: HW and SW are 

not developed in isolation.  

‣ Implementation is still done at RTL 

level. 
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HLS design flow 

10/04/2018 16 SEFUW 2018 

‣ IP cores modelled in C directly 

transformed into RTL. 

‣ Implementations by automated tools 

(CatapultC, Vivado HLS). 

‣ C codes are adapted for an efficient 

hardware implementation. 

‣ Advantages of HLS design: 

• Minimal design at RTL level. 

• Reduced Time-to-Market. 

• Fast exploration of different 

architectures and parallelization 

approaches. 

‣ Methodologies in this work: 

• CatapultC: CCSDS123 predictor in 

HLS, entropy coder and interfaces in  

VHDL. 

• Vivado HLS: full CCSDS123 lossy 

compressor. 
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‣ Results for Microsemi RTG4. 

CCSDS123  mapping 
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Resources BIP BIP-mem BSQ BIL 

MACC 7 (2%) 7 (2%) 7 (2%) 7 (2%) 

RAM64x18_RT 31 (15%) 33 (16%) 25 (12%) 38 (19%) 

RAM1K18_RT 4 (2%) 0 (0%) 1 (1%) 10 (5%) 

LUTs 4799 (4%) 5996 (4%) 5973 (4%) 5211 (4%) 

Max. Freq. (MHz) 78.3 78.3 68.5 75.2 

Resources BIP BIP-mem BSQ BIL 

MACC 13 (3%) 13 (3%) 11 (3%) 13 (3%) 

RAM64x18_RT 62 (30%) 64 (31%) 36 (18%) 65 (31%) 

RAM1K18_RT 129 (62%) 1 (0%) 1 (0%) 135 (65%) 

LUTs 7174 (5%) 7569 (5%) 7123 (5%) 7572 (5%) 

Max. Freq. (MHz) 61 69.3 70.1 61.1 

LANDSAT 

AVIRIS 



Lossy CCSDS123 compression ratios 
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Image Nx Ny Nz bpp Signed Endianness State 

AVIRIS 512 680 224 16 No BIG Preprocessed 

CRISM 90 135 1501 12 No LITTLE Calibrated 

HYPERSEC  
E-SERIES 

400 400 300 16 Yes LITTLE Raw 



Lossy CCSDS123 mapping 
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‣ Synthesis performed for Xilinx Zynq XC7Z020. 

‣ Baseline predictor configuration with: 

• BIL order processing. 

• Number of bands for prediction, P = 5. 

• Weight component resolution W = 13. 

• Neighbor oriented and full prediction.  

• Sample-adaptive encoder is always implemented. 

• Bit width of output buffer W_BUFFER = 64. 

 

Implementation 
Resources Max. Frequency 

(MHz) BRAM DSP48 LUT FF 

HLS (Catapult C) 28,21% 5% 24,77% 6,34% 72 

HLS (Vivado HLS) 25,36% 8% 11,92% 4,7% 80,2 

VHDL (SHyLoC)* 50,36% 4% 14,11% 5% 70 

*Lossless CCSDS-123 implementation (part of ESA’s IP core’s Repository). 



CCSDS121 mapping 
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‣ Synthesis results for Xilinx Virtex-V, Microsemi RTG4 and 

NanoXplore NG-MEDIUM. 

‣ Baseline encoder configuration with: 

• Block size J = 32. 

• Dynamic range of input samples, D = 16. 

• Bit width of output buffer W_BUFFER = 32. 

Device 
Resources Max. Frequency 

(MHz) BRAM DSP48 LUT FF 

Virtex 
XC5VFX130T 

3 1 3657 1501 
Clk_AHB  289,2 

Clk_S  118 

Microsemi  
RTG4 150 

11 3 5419 1347 
Clk_AHB  121,8 

Clk_S  51,4 

NanoXplore  
NG-MEDIUM* 

11 5 9371 1639 
Clk_AHB  79,8 

Clk_S  30,7 

*Using 2.8.3 version of NanoXplore NanoXmap 
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Conclusions 
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‣ We have presented different hardware implementations which perform 

lossless compression as specified by the CCSDS-121 and a proposed lossy 

extension for the CCSDS-123 standard. 

‣ Different architectures have been tested for the CCSDS-123 standard, 

depending on the compression order and the selected parameters. 

‣ HLS and RTL design methodologies have been applied, enabling a 

comparison between them. 

‣ Mapped to different FPGA devices: the proposed lossy CCSDS-123 

algorithm over Xilinx Zynq 7000-Series; the CCSDS-121 standard over 

NanoXplore NG-MEDIUM, Microsemi RTG4 and Xilinx Virtex-V. 

‣ Feasibility of the lossy implementation on Zynq XC7Z020 (maximum 

throughput 80 Msamples/s) and low complexity maximum 25% of LUTs and 

28% of BRAMs. 

‣ First approximation to the use of the first medium-capacity, high-

performance, radiation-hardened re-programmable European FPGA (NG-

MEDIUM). 
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