
Review and comparison of design methodologies and

hardware implementations on FPGA technologies.
Case study: CCSDS compression algorithms for

multispectral and hyperspectral images

10/04/2018 SEFUW 2018

Yúbal Barrios, Antonio Sánchez
Lucana Santos, Sebastián López, Roberto Sarmiento

10th April 2018

Outline

10/04/2018 2 SEFUW 2018

Introduction and background

CCSDS algorithms description

Design methodologies

Implementation results

Conclusions

Why do we need on-board compression?

10/04/2018 3 SEFUW 2018

‣ While the resolution of the remote sensors, and consequently the data

rates continue to increase, the available downlink bandwidth is

comparatively stable.

‣ Solution  to apply compression on-board the satellites.

‣ Lossless compression allows for reducing the data volume without

compromising the data integrity.

‣ Lossy compression yields higher compression ratios introducing losses in

the data.

Compressed
image

On-board
compression Downlink

Decompression

Hyperspectral
image

EO mission

Standard Algorithms of the CCSDS

10/04/2018 4 SEFUW 2018

‣ CCSDS image compression algorithms (Consultative Committee for

Space Data Systems)

CCSDS 121

‣ Universal lossless

based on Rice

codes.

CCSDS 122

‣ Lossless or lossy

2D compressor

based on DWT.

CCSDS 123

‣ Multi/hyperspectral

compressor based on

prediction.

Standard Algorithms of the CCSDS

10/04/2018 5 SEFUW 2018

CCSDS 121

‣ Universal lossless

based on Rice

codes.

CCSDS 122

‣ Lossless or lossy

2D compressor

based on DWT

CCSDS 123

‣ Multi/hyperspectral

compressor based on

prediction.

‣ CCSDS image compression algorithms (Consultative Committee for

Space Data Systems)

‣ Lossless compression

• Data compression: CCSDS121.

• Multispectral & Hyperspectral compression:

CCSDS123

− Block coder (Golomb).

− Rice coder (CCSDS123).

• Part of ESA’s IP core’s Repository and CoBham

Gaisler IP library.

‣ Lossy compression

• CCSDS123 lossy extension.

• HyperLCA: IUMA lossy algorithm (including

multispectral & Hyperspectral fusion).

Compression IP cores developed

10/04/2018 6 SEFUW 2018

‣ ESA TRP: extension of the SHyLoC IP Cores (CCSDS121 and

CCSDS123)

• CCSDS 121 and CCSDS 1123 lossless compression IP cores.

• On-going development:

− Complete CCSDS121 IP to be able to compress independently.

− New memory architectures for the CCSDS123 IP improving the

throughput.

− Compatible with SRAM-based FPGAs (Xilinx Virtex V, NanoXplore

NG-MEDIUM).

‣ ENABLE-S3: Reconfigurable Video Processor for Space

• Consortium: GMV, ITI, TAS-E, ULPGC, UPM.

• Fault-tolerant and reconfigurable lossy compression over

Xilinx Zynq UltraScale+.

‣ REBECCA:

• HyperLCA compression using OpenCL heterogeneous

computing over Altera Stratix and nVidia GPUs.

Ongoing Projects

10/04/2018 7 SEFUW 2018

Outline

10/04/2018 8 SEFUW 2018

Introduction and background

CCSDS algorithms description

Design methodologies

Implementation results

Conclusions

CCSDS121 Standard

10/04/2018 9 SEFUW 2018

‣ Block-adaptive encoder:

• A variable-length code that utilizes Rice’s

adaptive coding technique.

• For a block of J samples, the coder

evaluates the option that yields the

shortest codeword.

• J is a configurable value (8, 16, 32, 64).

• Basic code: FS codeword.

CCSDS123 Standard

10/04/2018 10 SEFUW 2018

‣ Prediction-based using neighboring samples in the

same band and in P previous bands (local sum and

local differences).

‣ The prediction is computed from the dot product

(𝑑) between the local differences vector (𝑈) and a

weight vector (𝑊) 𝑑 = 𝑊𝑇
𝑧,𝑦,𝑥 ∙ 𝑈𝑧,𝑦,𝑥

‣ Prediction residuals are mapped and then encoded

using a variable-length binary codeword.

‣ The variable-length codes are adaptively selected

based on statistics that are updated after each

sample is encoded.

CCSDS123 architectural solutions

10/04/2018 11 SEFUW 2018

‣ Different architectures, depending on the sensor type: BIP, BSQ, BIL.

‣ For BIP and BIL orders, two different memory approaches:

• Mem architecture: uses external memory to store intermediate values for

compression  Lower resource utilization.

• Base architecture: stores the intermediate results only in the FPGA internal

memory  Better throughput.

‣ Different storage requirements depending on the compression order, image

size and P (number of bands used for prediction).

• Different achievable throughput:

− BIP  allows for parallelization of prediction operations of a sample in all bands.

− BSQ  prediction finished before starting the compression of samples in the same band.

− BIL  mixed situation.

CCSDS123 Lossy Extension

10/04/2018 12 SEFUW 2018

Run CCSDS-123 and
estimate the variance

Rate-control
with

optimization

Spatial/spectral
prediction with

CCSDS-123
Encode prediction

errors with the
range encoder

Rate- control stages

Prediction

Entropy coding

Input image

Quantize Map

Dequantize

+
Locally

reconstructed
image

-
Prediction residual

Lossless mode Compressed
stream

Q

Predicted sample

Q

Optional feedback mode

Achieved rate

‣ Hyperspectral Compression algorithm, works in near-lossless to lossy range*.

‣ Able to adapt losses according to the user-selected bit rate (rate control).

‣ Leverages predictor and entropy coder from the CCSDS-123.0 lossless

compressor.

‣ Rate control will be included in the standard as an option.

*D. Valsesia and E. Magli, "A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral

Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 10, pp. 6341-6355, Oct. 2014.

Outline

10/04/2018 13 SEFUW 2018

Introduction and background

CCSDS algorithms description

Design methodologies

Implementation results

Conclusions

RTL design flow

10/04/2018 14 SEFUW 2018

‣ All the design and verification steps

are performed at RTL level:

• Full control of all implementation

details (cycle-accurate design).

• Validation and optimization after RTL

design.

• Large design times for complex

systems.

• Costly specification refinement

(necessity of partially re-designed).

CCSDS 123

IP core
specification

DEVELOP functional
specification

DEFINITION
PHASE

RTL DESIGN
DEVELOP
testbench

FUNCTIONAL
VERIFICATION

Demonstrator
design

WRITE technical specification

HW implementation

Test images

ARCHITECTURAL DESIGN

R
EF

IN
E

SP
EC

IF
IC

A
TI

O
N

SPEC

RTL

Mixed design flow

10/04/2018 15 SEFUW 2018

‣ IP cores modelled in a high-level

programming language (C/C++) as

previous stage of a VHDL

implementation.

‣ Advantages of having a higher

abstraction model:

• Numerous iterations for architecture

exploration in a short term.

• Generate specifications that lead to

efficient implementations.

• Design optimization at an early

stage.

• Validate hardware against software

before the RTL description is

modelled.

• HW/SW co-design: HW and SW are

not developed in isolation.

‣ Implementation is still done at RTL

level.

CCSDS 123

IP core
specification

DEVELOP functional
specification

DEFINITION
PHASE

C description

Behavioural
model

DEVELOP
testbench

Architecture
refinement

Demonstrator
design

WRITE technical specification

RTL DESIGN

FUNTIONAL VERIFICATION

HW implementation

Test images

ARCHITECTURAL DESIGN

REFINE SPECIFICATION

SPEC

MODEL

RTL

HLS design flow

10/04/2018 16 SEFUW 2018

‣ IP cores modelled in C directly

transformed into RTL.

‣ Implementations by automated tools

(CatapultC, Vivado HLS).

‣ C codes are adapted for an efficient

hardware implementation.

‣ Advantages of HLS design:

• Minimal design at RTL level.

• Reduced Time-to-Market.

• Fast exploration of different

architectures and parallelization

approaches.

‣ Methodologies in this work:

• CatapultC: CCSDS123 predictor in

HLS, entropy coder and interfaces in

VHDL.

• Vivado HLS: full CCSDS123 lossy

compressor.

CCSDS 123

IP core
specification

DEVELOP functional
specification

DEFINITION
PHASE

C description

Behavioural
model

DEVELOP
testbench

Architecture
refinement

Demonstrator
design

WRITE technical specification

FUNTIONAL VERIFICATION

HW implementation

Test images

ARCHITECTURAL DESIGN

REFINE SPECIFICATION

SPEC

MODEL

RTL

HLS design flow

10/04/2018 17 SEFUW 2018

‣ IP cores modelled in C directly

transformed into RTL.

‣ Implementations by automated tools

(CatapultC, Vivado HLS).

‣ C codes are adapted for an efficient

hardware implementation.

‣ Advantages of HLS design:

• Minimal design at RTL level.

• Reduced Time-to-Market.

• Fast exploration of different

architectures and parallelization

approaches.

‣ Methodologies in this work:

• CatapultC: CCSDS123 predictor in

HLS, entropy coder and interfaces in

VHDL.

• Vivado HLS: full CCSDS123 lossy

compressor.

CCSDS 123

IP core
specification

DEVELOP functional
specification

DEFINITION
PHASE

C description

Behavioural
model

DEVELOP
testbench

Architecture
refinement

Demonstrator
design

WRITE technical specification

FUNTIONAL VERIFICATION

HW implementation

Test images

ARCHITECTURAL DESIGN

REFINE SPECIFICATION

SPEC

MODEL

RTL

Outline

10/04/2018 18 SEFUW 2018

Introduction and background

CCSDS algorithms description

Design methodologies

Implementation results

Conclusions

‣ Results for Microsemi RTG4.

CCSDS123 mapping

10/04/2018 19 SEFUW 2018

Resources BIP BIP-mem BSQ BIL

MACC 7 (2%) 7 (2%) 7 (2%) 7 (2%)

RAM64x18_RT 31 (15%) 33 (16%) 25 (12%) 38 (19%)

RAM1K18_RT 4 (2%) 0 (0%) 1 (1%) 10 (5%)

LUTs 4799 (4%) 5996 (4%) 5973 (4%) 5211 (4%)

Max. Freq. (MHz) 78.3 78.3 68.5 75.2

Resources BIP BIP-mem BSQ BIL

MACC 13 (3%) 13 (3%) 11 (3%) 13 (3%)

RAM64x18_RT 62 (30%) 64 (31%) 36 (18%) 65 (31%)

RAM1K18_RT 129 (62%) 1 (0%) 1 (0%) 135 (65%)

LUTs 7174 (5%) 7569 (5%) 7123 (5%) 7572 (5%)

Max. Freq. (MHz) 61 69.3 70.1 61.1

LANDSAT

AVIRIS

Lossy CCSDS123 compression ratios

10/04/2018 20 SEFUW 2018

20

30

40

50

60

70

80

90

2 3 4 5 6 7

SN
R

 (
d

B
)

bpp

AVIRIS YellowStone

50

55

60

65

70

75

80

85

90

95

2 2,5 3 3,5 4 4,5

SN
R

 (
d

B
)

bpp

Compact Reconnaissance Imaging
Spectrometer for Mars (CRISM)

20

25

30

35

40

45

2 3 4 5 6 7

SN
R

 (
d

B
)

bpp

Hyperspec® VNIR E-Series

Image Nx Ny Nz bpp Signed Endianness State

AVIRIS 512 680 224 16 No BIG Preprocessed

CRISM 90 135 1501 12 No LITTLE Calibrated

HYPERSEC
E-SERIES

400 400 300 16 Yes LITTLE Raw

Lossy CCSDS123 mapping

10/04/2018 21 SEFUW 2018

‣ Synthesis performed for Xilinx Zynq XC7Z020.

‣ Baseline predictor configuration with:

• BIL order processing.

• Number of bands for prediction, P = 5.

• Weight component resolution W = 13.

• Neighbor oriented and full prediction.

• Sample-adaptive encoder is always implemented.

• Bit width of output buffer W_BUFFER = 64.

Implementation
Resources Max. Frequency

(MHz) BRAM DSP48 LUT FF

HLS (Catapult C) 28,21% 5% 24,77% 6,34% 72

HLS (Vivado HLS) 25,36% 8% 11,92% 4,7% 80,2

VHDL (SHyLoC)* 50,36% 4% 14,11% 5% 70

*Lossless CCSDS-123 implementation (part of ESA’s IP core’s Repository).

CCSDS121 mapping

10/04/2018 22 SEFUW 2018

‣ Synthesis results for Xilinx Virtex-V, Microsemi RTG4 and

NanoXplore NG-MEDIUM.

‣ Baseline encoder configuration with:

• Block size J = 32.

• Dynamic range of input samples, D = 16.

• Bit width of output buffer W_BUFFER = 32.

Device
Resources Max. Frequency

(MHz) BRAM DSP48 LUT FF

Virtex
XC5VFX130T

3 1 3657 1501
Clk_AHB  289,2

Clk_S  118

Microsemi
RTG4 150

11 3 5419 1347
Clk_AHB  121,8

Clk_S  51,4

NanoXplore
NG-MEDIUM*

11 5 9371 1639
Clk_AHB  79,8

Clk_S  30,7

*Using 2.8.3 version of NanoXplore NanoXmap

Outline

10/04/2018 23 SEFUW 2018

Introduction and background

CCSDS algorithms description

Design methodologies

Implementation results

Conclusions

Conclusions

10/04/2018 24 SEFUW 2018

‣ We have presented different hardware implementations which perform

lossless compression as specified by the CCSDS-121 and a proposed lossy

extension for the CCSDS-123 standard.

‣ Different architectures have been tested for the CCSDS-123 standard,

depending on the compression order and the selected parameters.

‣ HLS and RTL design methodologies have been applied, enabling a

comparison between them.

‣ Mapped to different FPGA devices: the proposed lossy CCSDS-123

algorithm over Xilinx Zynq 7000-Series; the CCSDS-121 standard over

NanoXplore NG-MEDIUM, Microsemi RTG4 and Xilinx Virtex-V.

‣ Feasibility of the lossy implementation on Zynq XC7Z020 (maximum

throughput 80 Msamples/s) and low complexity maximum 25% of LUTs and

28% of BRAMs.

‣ First approximation to the use of the first medium-capacity, high-

performance, radiation-hardened re-programmable European FPGA (NG-

MEDIUM).

Questions?

Yúbal Barrios

E-mail: ybarrios@iuma.ulpgc.es

Antonio Sánchez

E-mail: ajsanchez@iuma.ulpgc.es

10/04/2018 SEFUW 2018 25

