USE OF FPGAS IN A SCIENTIFIC INSTRUMENT DEVELOPMENT

Damien Rambaud
IRAP CNRS
OUTLINE

• SVOM / Eclair project
• FPGA needs in each parts of the project
• NX-Medium experience
• Athena X-IFU example
• Conclusion
SVOM PROJECT

SVOM is a French-Chinese astronomy mission to detect gamma-ray bursts generated by the explosion of massive stars or the merger of neutron stars or black holes.

ECLAIRs
- One of the 4 instruments of the SVOM Mission
- Developed and provided by French teams
- Dedicated to GRBs detection and early alert
IRAP is in charge of the detection plane and Front-end electronic of the Eclairs instrument.

The instrument will measure energy between 4 and 150 KeV.

1000 cm2 detection plane

6400 CdTe detectors

200 Asics managed by 8 FPGA

8 Front-end electronic boxes: ELS (FPGA inside!)

200 XRDPiX
ELS BOX

- Detection plan read-out and command / Control
- Divided into 8 sectors
- For each sector:
 - LVPS/HVPS board (0 à -500V)
 - MUX/ADC (12 bits) board
 - Processing board (FPGA)
 - Backplane board
PEOPLE INVOLVED IN DEVELOPMENT

- **Scientists**
 - Need to be able to simulate the instrument as precise as possible
 - Need to control the instrument for calibration

- **Software engineers**
 - Need simulators to validate software (OBSW or EGSE)
 - Need interface board to control EM QM, FM

- **Electronic engineers**
 - Use flight FPGA to build the instrument
 - Need breadboards with engineering models
 - Need interface board to control flight instrument and validate flight model

- **Instrumentalist engineers**
 - Need interface board to control EM QM, FM
FPGA Needs in a Project

<table>
<thead>
<tr>
<th>Where:</th>
<th>Instrument interfacing</th>
<th>Simulator</th>
<th>EM, QM, FM development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientists</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Electronic engineers</td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Software engineers</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Instrumentalist engienners</td>
<td>×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INSTRUMENT INTERFACING

- Useful to control EM, QM, FM
- Not too expensive
- Must be easily duplicable
SIMULATOR

- Help in EGSE development by providing instrument simulation
- Provides a convenient way to simulate the instrument
- Be as representative as possible
- If possible, not too expensive
- This allows scientist to check the performances of the digital part very easily
- Easy to use

Opal Kelly XEM6010
SIMULATOR

Data injector → VHDL flight code → Sub system simulator → Computer communication

Science data

To / from PC

Block Diagram

USB Micro (CY68013A)

PLL (CY22393)

Flash 32 Mib

DDR2 SDRAM 128 MIB

Spartan-6 FPGA XC6SLX45-2FGG484 or XC6SLX150-2FGG484

60 I/O

8 LEDs

1 PLL CLK

3 PLL CLKs

Host Interface Bus

Samtec Expansion Connector

Opal Kelly XEM6010
FLIGHT INSTRUMENT DEVELOPMENT

• Breadboard, EM : use of cheap commercial devices or FPGA engineering models

• QM, FM : use of in different grades of final target

• Anyway this implies the use of different types of FPGA…
CONSTRAINTS

- All these developments need more than one type of FPGA (Xilinx, Nanoxplore, Atmel…)
- VHDL flight code needs to be synthesized on different targets
- When possible, use coding rules that ease portability
- If possible, build breadboards based on the flight chip
ELS ARCHITECTURE
SVOM ECLAIRS CONSTRAINTS

- We can’t use any US device.
- Until last year, FPGA was ATF280F.
- Unfortunately, implementation of our design has not been possible due to the synthesizer performances.
- We tried several changes without success.
- To be able to continue to work on other subsystems, we replace the ATF280 by commercial FPGA module from Humandata (spartan-6 based).
- In January 2017 we start thinking about digital ASIC.
- In April 2017 we choose to switch to NX-MEDIUM.
NX BREADBOARD

- Due to the problems with ATF280, we have a board that uses spartan-6 FPGA
- This board was designed as a replacement of the spartan-6 existing board
- It was designed with active support of NanoXplore
NG-MEDIUM BREADBOARD
SYNTHESIS

<table>
<thead>
<tr>
<th></th>
<th>Xilinx (ProtoDpix) Spartan 6</th>
<th>ATMEL ATF280</th>
<th>NanoXplore brave NG-MEDIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupation rate</td>
<td>6%</td>
<td>70%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with 70% of features</td>
<td></td>
</tr>
<tr>
<td>Bitstream generation time</td>
<td>20 min</td>
<td>4 h</td>
<td>7 min</td>
</tr>
<tr>
<td>Real life test</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Power supplies</td>
<td>-</td>
<td>3.3V, 1.8V</td>
<td>3.3V, 2.5V, 1.2V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3V 0,75W</td>
<td>2.5V 0,4W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2V 0,12W</td>
<td>Total: 1,27W</td>
</tr>
<tr>
<td>Packaging</td>
<td>-</td>
<td>QPF352</td>
<td>QPF352</td>
</tr>
</tbody>
</table>
NG-MEDIUM EXPERIENCE

• Our configuration was: Ubuntu 14.04.2 LTS, nanoXmap 2.7.3 for NG-Medium

• Bitstream generation takes 7 minutes for our design. It takes 38% of the FPGA.

• Python script is very convenient

• NX bitstream has been converted to be used with the Atmel space programmer

• NX-Medium is now loaded by the Atmel flash PROM

• Our design has been successfully ported on the NX-MEDIUM
DEVELOPMENTS

NetPix Board: Is able to communicate with the instrument
Base on custom design (works with ethernet)

Used by Electronic engineers, instrumentalists engineers and scientists

Flight board: Initially built with ATF280
Has been modified to use NX-MEDIUM (see next)

NX Breadboard: Use on the electrical model to replace a Spartan-6 commercial board

EL Simulator: Is able to simulate one ELS
Base on Opal Kelly XEM6010 (spartan 6)

Used by Software engineers and scientists to perform software validation and simulations
ANOTHER (VERY BRIEF) EXAMPLE
The Digital Readout Electronics (DRE) of Athena X-IFU

- Cryogenic detection array made of 4000 TES-type micro-calorimeters
- TES: Transition Edge Sensors (operated at 90mK, cooled at 50mK)
- Frequency Domain Multiplexing (96 readout chains of 40 pixels each)

<table>
<thead>
<tr>
<th>DSP</th>
<th>656</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Speed</td>
<td>80 MHz</td>
</tr>
<tr>
<td>Memory</td>
<td>84 banks of 128 words of 32-bits</td>
</tr>
<tr>
<td>User I/Os</td>
<td>~300</td>
</tr>
</tbody>
</table>

48 FPGAs like this one are needed in the DRE to process the 96 readout chains
The Digital Readout Electronics (DRE) of Athena X-IFU

Designed and developed by Bernard Bertrand & Antoine Clénet.

ADC / DAC manager
Virtex 6 VLX240
(NG-Ultra is a possible candidate component for FM)

data rate: 160 MB/s

DPU simulator
Kintex 7 K160
FOCAL PLANE SIMULATOR

Kintex7-k410
FPA Simulator
40 pixels
86% occupied slice
Number of DSP 48%

Virtex6-VLX240
Manage ADC-DAC

Hi-speed ADC-DAC

Designed and developed by Bernard Bertrand & Antoine Clénet.
CONCLUSION
CONCLUSION

• We use a (too?) wide variety of FPGA: Spartan 3, Spartan 6, Kintex 7, ATF-280, NG-Medium…

• Pro: We can easily handle different needs

• Cons: need to handle multiple development kits

• Cons: need to take care when writing VHDL to ensure portability

• Switching from a target to another takes time (coding, validation…)

Do you have this kind of problematic?

How do you solve this situation?
• It would be a good idea (?) to try to use the same chip everywhere

• It also be good to have only one EGSE communication protocol (and not dealing with USB, Ethernet…etc…)

• Will be the main part of a distributed development environment

• Could be used in simulators and breadboards

• Board will be a little more expensive but we will gain time and design costs

• Work in progress…