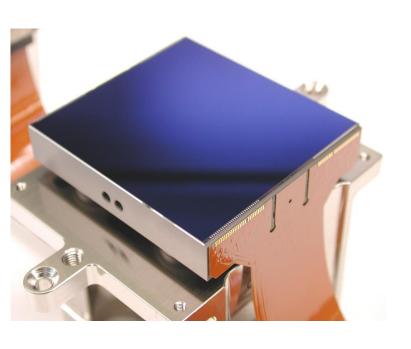
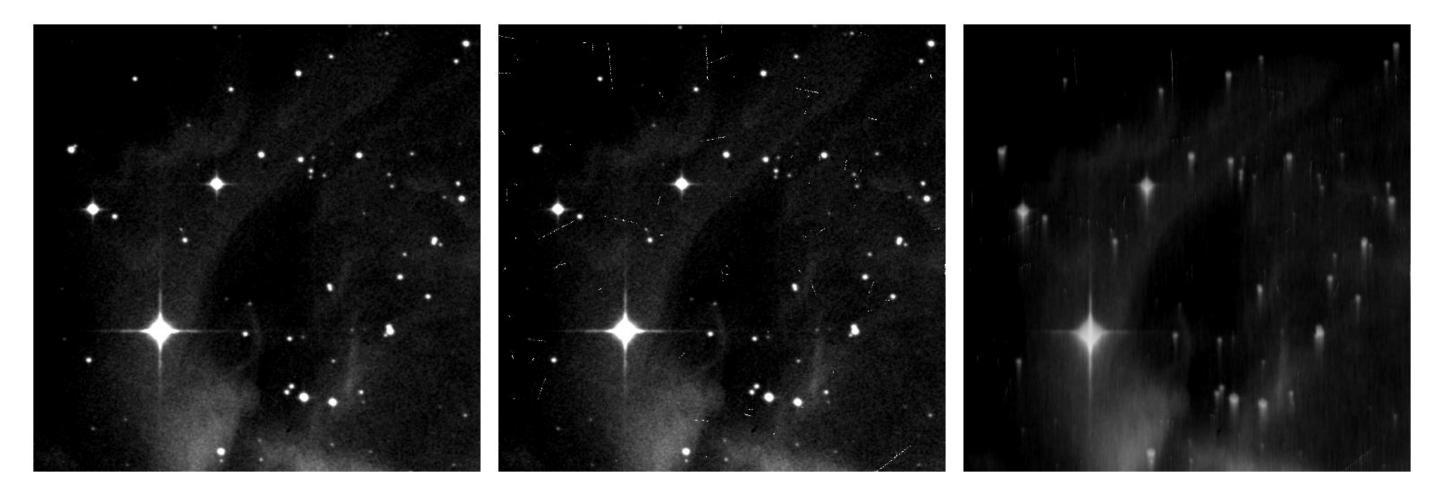

Simulating radiation effects of imaging detectors using Pyxel simulation framework

David Lucsanyi (ESA/ESTEC, D/Science, Future Missions Dept., Payload Validation Section)

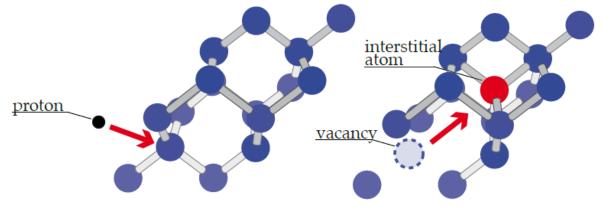

Astronomy missions & Payload imaging detectors

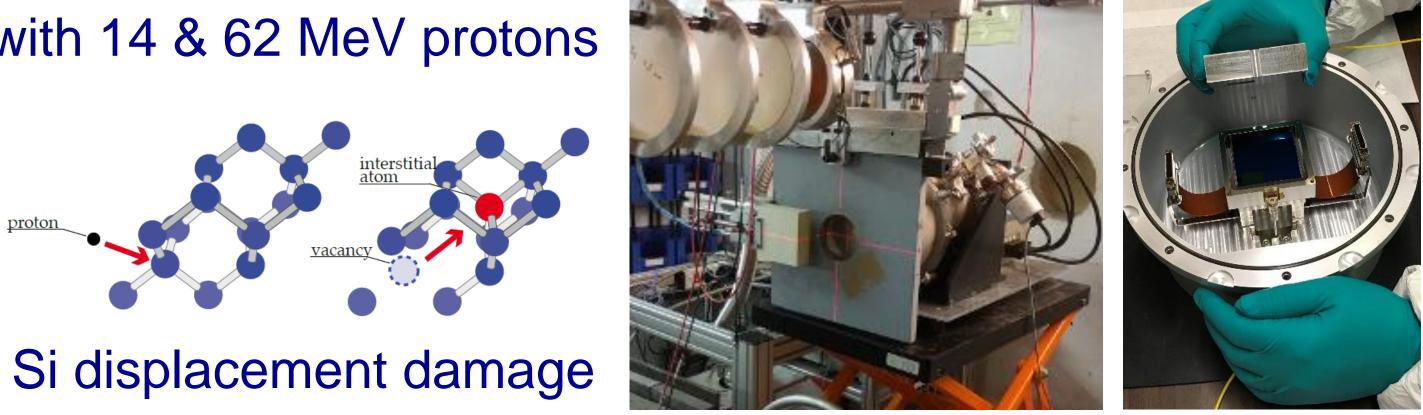
- Charge-Coupled Devices (CCD)
- CMOS imaging sensors:
 - Hybrid (HgCdTe)
 - Monolithic (Si)

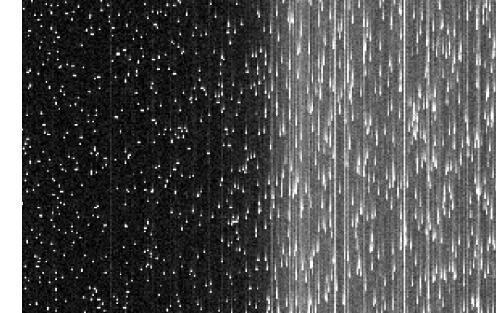


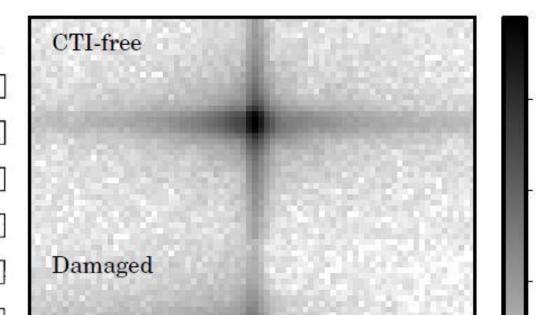
- High energy particles cause displacement damages in the CCD silicon lattice which are trapping charges during their pixel-to-pixel transfer and releasing them later
- CTI distorts images (smear) and decreases the SNR
- Different trap species have different energy levels, charge capture cross-sections and release time constants
- Modelling CTI is critical to understand laboratory data, estimate end-of-life performance and also perform onground mitigation during the data processing The Charge Distortion Model (CDM) [1] is a physically realistic, and fast analytical CTI model. It was developed originally for the Gaia CCD operating mode.

Visible & Near-Infrared astronomy missions of ESA



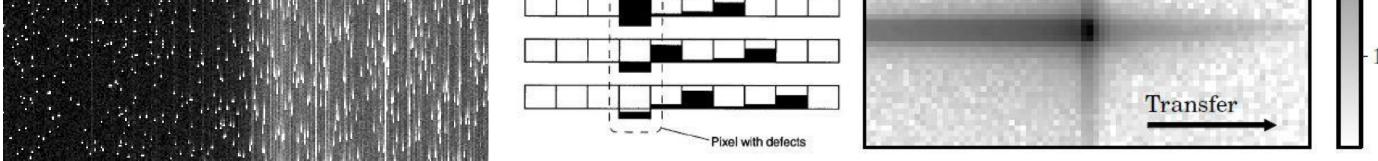
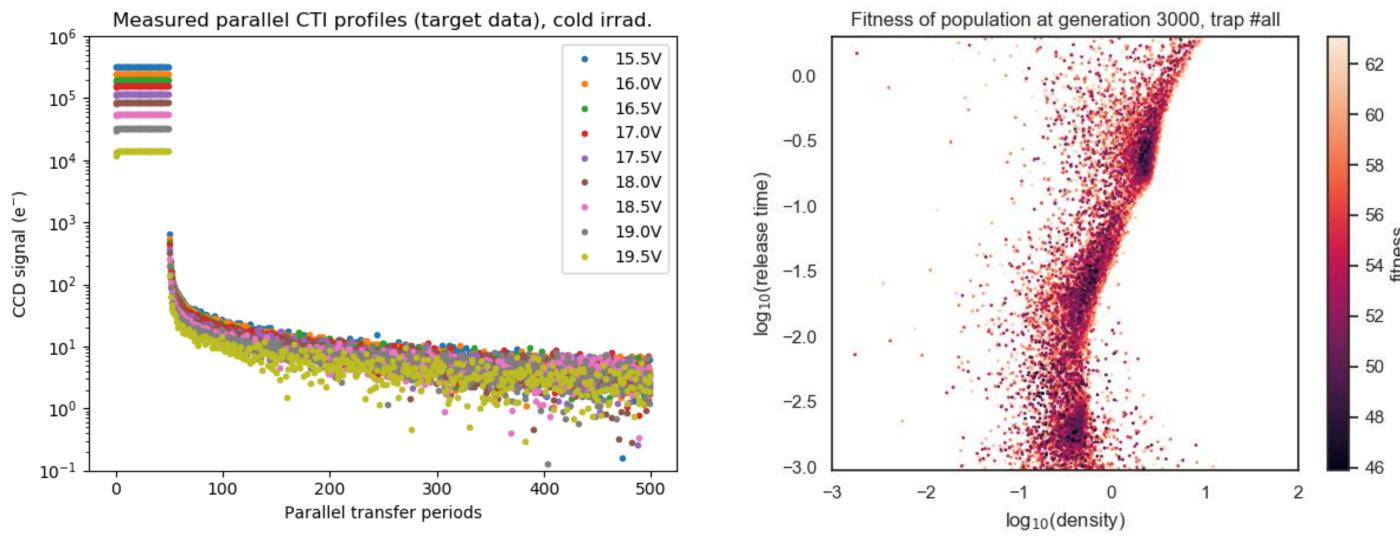

HST image with cosmic rays and CTI added by Pyxel

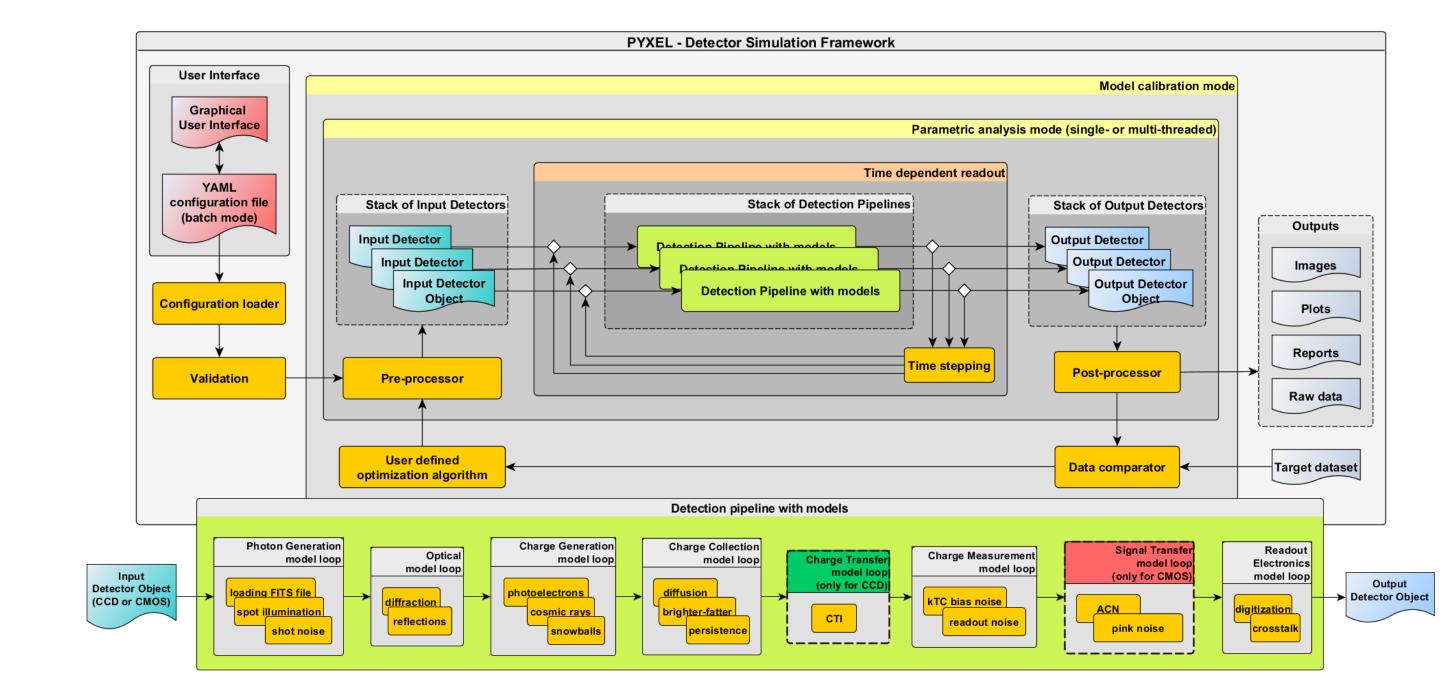

Pyxel – the python detector simulation framework


- A novel, end-to-end detector electro-optical performance simulation framework hosting and pipelining a pool of detector effect models [2]
- Simulates both CCD and CMOS-based imaging detectors
- General, modular and scalable Python framework

Euclid CCD irrad. at UCL with 14 & 62 MeV protons

- Easy-to-use plug-in mechanism for model functions, which could be analytical, numerical and statistical codes as well
- Using structured YAML configuration files as input
- Automatically generated web-based Graphical User Interface
- Model calibration & detector optimization with genetic, selfadaptive evolutionary and non-linear optim. algorithms [3]
- Will be released and maintained as an open-source software for the whole detector scientist and astronomer community
- Some detector effects:
 - Radiation effects: Cosmic ray tracks, Charge Transfer Inefficiency (CCD), Persistence (CMOS)
 - Optical effects: Tree rings, Internal reflections, Optical Point Spread Function, Pixel Response Non-Uniformity
 - Charge diffusion: Brighter-fatter, Blooming
 - Noises: Dark current, Shot & Readout noise, RTG, Digitization, Crosstalk


Image of irrad. CCD

Simulated CTI effect in Gaia CCDs

Trails of charge blocks injected in PLATO CCDs after irrad.

Final population of evolutionary algo. fitting data

	oyxel.models_importer	Load	depletion_thickness (um)	0	0								14	pr
Update from file (yaml) p			depresent_unexiteas (ani)	U	·	🗘 Set		cols	1000	1000	Set		15	
	pyxel/io/config/settings_ccd.yaml	Load	field_free_thickness (um)	0	0	🗘 Set		▶ photon_level					16 17	
Output file (yaml) test.yaml Generate			total_thickness (um)	40	40 .	🗘 Set	-	▶ shot_noise						
Load file (yaml) p	oyxel/io/config/settings_ccd.yaml	Load	pixel_vert_size (um)	10	10	÷ Set	=	▼ tars					20 21	
PyXEL Pipeline Runner			pixel_ver(_sec (ani)	10		- · · · · · ·		simulation_mode	cosmic_ray	cosmic_ray	Set		22	
	data/pyxel/output_image_???.fits	_	pixel_horz_size (um)	10	10	🗘 Set		running_mode	geant4	geant4	Set		23	
Output life (itis)	sata/pyxe/output_image_???.fits						=						24	
State		Run	readout_nodes	1	1	Set		particle_type	proton	proton	Set		2.5	
Parametric Configuration			sensor_geometry			Set		initial_energy	y random	random	Set		26 27	
							_						28	
	◎ single ○ embedded ○ sequential	Set	frame	-		Set		particle_number	500	500	Set		29	
Jence 0 - i	initial ener; 🛊 100, 200, 300	× •	► Material Section					incident_angles			Set		30 31	
ence 1 -	\$	- U - U - U	Environment Section					starting_position			Set		32	
ence 2 _	÷		temperature (K)	300	300	🗘 Set		starting_position	-		Jet /		33	
ence 3 -				000		~ _ ~	_	spectrum_file	pyxel/models/tars/data	pyxel/models/tars/data/ir	Set		34 35	
uence o -	· · · · · · · · · · · · · · · · · · ·	<u> </u>	total_ionising_dose (MeV/g)	80000	8e+4	Set		random_seed			Set		36	
quence 4 -	÷		total_non_ionising_dose	0	0	Set		Tandom_seed					37	
odels			(MeV/g)	Ŭ				► fixed_pattern_noise					38 39	
photon generation 🕑 load image			▼ CCDCharacteristics Section					▼ cdm					40	
	photon level ✓ shot noise	_	qe	0.5	0.5	🗘 Set		beta_p	0.6	0.6	Set		41 42	
optics	e shot hoise		eta	0.5	0.5	A Set	=	beta_s	0.6	0.6	Set		43	
charge generation	 ✓ nhotoelectrons 											25 50 76 101 125 151 176 202 227	4.4	
	 ✓ tars 	_	sv (V/-e)	0.000001	0.000001	🗘 Set		vg	6e-11	6e-11	Set		45 46	
charge collection			amp	1	1	2 Set		svg	1e-10	1e-10	Set		40	
	Integration noise ✓ full well		amp		-	• Set		· · · · · · · · · · · · · · · · · · ·					48	
charge transfer 🖌		_	a1	100	100	🗘 Set		t	0.02048	0.02048	Set		49	
			a2	65536	65536	🗘 Set		st	0.000005	0.000005	Set		51	
charge measurement				00000			=	analisi tere file		averal lana da la la dan la dan	Set		52	
readout electronics			fwc (electrons)	2800	2800	Set		paraner_trap_me	pyxermodels/com/com	pyxel/models/cdm/cdm_			53 54	
			fwc_serial (electrons)	3000	3000	🗘 Set		serial_trap_file	pyxel/models/cdm/cdm	pyxel/models/cdm/cdm_	Set		54	
								output_node_noise					56	

The GUI and a YAML config file of Pyxel framework

The architecture of Pyxel and its pipeline

david.lucsanyi@esa.int

http://sci.esa.int/pyxel

d_free_thickness: l_vert_size: 10. l_horz_size: 10.

serial: 3000 _voltage: 50.

→ SERESSA 2018

12-16 Nov. 2018, ESA/ESTEC

[1] A. Short et al., "An analytical model of radiation-induced Charge Transfer Inefficiency for CCD detectors", Monthly Notices of the Royal Astronomical Society 430(4), 2013. [2] D. Lucsanyi et al., "Pyxel: a novel and multi-purpose Python-based framework for imaging detector simulation", Proc. SPIE 10709, 2018. [3] F. Biscani & D. Izzo., Pagmo 2.9, DOI:10.5281/zenodo.1406840, 31. Aug. 2018.

European Space Agency