Modeling of SET Generation in Standard CMOS Logic Gates

Marko Andjelkovic, Milos Krstic, Rolf Kraemer IHP, Im Technologiepark 25, Frankfurt Oder, Germany

MOTIVATION

- With the technological downscaling, the Single Event Transients (SETs) are becoming a major reliability issue in modern CMOS technologies employed in space applications
- For rad-hard design automation, accurate models for SET generation effects are required
- Existing models for SET generation have crucial shortcomings:
- Critical charge models do not consider all relevant parameters (e.g. load and temperature) or require the knowledge of some process parameters

GOALS

- To address the limitations of existing models by establishing more accurate circuit-level SET generation models for:
 - Critical charge (minimum charge causing a SET)
 - SET pulse width (width of generated SET voltage pulse)
- To consider the combined impact of all relevant parameters:
 - \succ Drive strength of target gate (S_T)
 - \succ Drive strength of load gate (S₁)
 - \succ Capacitance of interconnections (C_{W})
- Most SET pulse width models are based on double-exponential current source which is inaccurate for SET pulse width estimation
- It is required to establish more accurate models for analysis of SET generation in standard combinational cells
- \succ Supply voltage (V_{DD})
- \succ Temperature (T_{EMP})
- > SET current pulse width (T_{PULSE})
- > Input logic levels
- The proposed models have been derived from SPICE simulations

APPROACH

- Analysis based on current injection in SPICE simulations, using Cadence Virtuoso
- SET was modeled with a current source connected at the output of target gate
- Dependence of critical charge and SET pulse width on design and operating parameters was investigated
- Standard logic gates in IHP's 130 nm CMOS technology were analyzed
- Critical charge analysis:
 - **Double-exponential current source** was used as SET current model
- SET pulse width analysis:
 - **Bias-dependent current source** was used as SET current model (J. Kauppila et al., IEEE TNS, 2009)

CRITICAL CHARGE MODEL

- A critical charge (Q_{CRIT}) model based on linear superposition principle is proposed
- Q_{CRIT} in terms of S_T , S_L , C_W , V_{DD} , T_{EMP} , and T_{PULSE}
- Relative error compared to SPICE is below 10 %
- Model has been verified for common standard logic gates (INV, BUF, AND, NAND, OR, NOR, XOR, XNOR)
- Open issues:
 - Nonlinearities for high driving strengths of target gate, resulting in high relative error

Proposed critical charge model:

 $Q_{CRIT} = Q_{NOMINAL} + \sum_{i} Q_i$

- Q_{NOMINAL} is the value of Q_{CRIT} when all parameters are at nominal values
- Q_i defines the increase or decrease of Q_{CRIT} due to the variation of *i*-th parameter

SET PULSE WIDTH MODEL

SET pulse width model considering the bias-A dependence of the SET current pulse is proposed

- \blacksquare T_{SFT} in terms of S_T, V_{DD} and LET
- Relative error with respect to SPICE is below 8 % for LET > 2 MeV cm² mg⁻¹
- Model has been verified for inverter
- Open issues:
 - Extension of model to include the impact of other relevant parameters
 - Verification of proposed model with other standard logic gates

$$T_{SET} = f_a \left(\frac{LET}{S_T}\right) + f_b(V_{DD})$$

DFG

Deutsche Forschungsgemeinschaft

Funding: This work is conducted within REDOX project (Reduction of simulations) and irradiation experiments by optimization of single event effects evaluation), funded by DFG (Deutsche Forschungsgemeineschaft)

innovations for high performance microelectronics | Im Technologiepark 25 | 15236 Frankfurt (Oder) | Germany | www.ihp-microelectronics.com

