Simulating radiation effects of imaging detectors using Pyxel simulation framework

David Lucsanyi (ESA/ESTEC, D/Science, Future Missions Dept., Payload Validation Section)

Astronomy missions & Payload imaging detectors

- Charge-Coupled Devices (CCD)
- CMOS imaging sensors:
 - Hybrid (HgCdTe)
 - Monolithic (Si)

- High energy particles cause displacement damages in the CCD silicon lattice which are trapping charges during their pixel-to-pixel transfer and releasing them later
- CTI distorts images (smear) and decreases the SNR
- Different trap species have different energy levels, charge capture cross-sections and release time constants
- Modelling CTI is critical to understand laboratory data, estimate end-of-life performance and also perform onground mitigation during the data processing The Charge Distortion Model (CDM) [1] is a physically realistic, and fast analytical CTI model. It was developed originally for the Gaia CCD operating mode.

Visible & Near-Infrared astronomy missions of ESA

HST image with cosmic rays and CTI added by Pyxel

Pyxel – the python detector simulation framework

- A novel, end-to-end detector electro-optical performance simulation framework hosting and pipelining a pool of detector effect models [2]
- Simulates both CCD and CMOS-based imaging detectors
- General, modular and scalable Python framework

Euclid CCD irrad. at UCL with 14 & 62 MeV protons

- Easy-to-use plug-in mechanism for model functions, which could be analytical, numerical and statistical codes as well
- Using structured YAML configuration files as input
- Automatically generated web-based Graphical User Interface
- Model calibration & detector optimization with genetic, selfadaptive evolutionary and non-linear optim. algorithms [3]
- Will be released and maintained as an open-source software for the whole detector scientist and astronomer community
- Some detector effects:
 - Radiation effects: Cosmic ray tracks, Charge Transfer Inefficiency (CCD), Persistence (CMOS)
 - Optical effects: Tree rings, Internal reflections, Optical Point Spread Function, Pixel Response Non-Uniformity
 - Charge diffusion: Brighter-fatter, Blooming
 - Noises: Dark current, Shot & Readout noise, RTG, Digitization, Crosstalk

Image of irrad. CCD

Simulated CTI effect in Gaia CCDs

Trails of charge blocks injected in PLATO CCDs after irrad.

Final population of evolutionary algo. fitting data

								14 processor:
Load module	es pyxel.models_importer	Load	depletion_thickness (um)	0	0	🗘 Set	cols 1000 Set	15 class: p
Update from file (yan	nl) pyxel/io/config/settings_ccd.yaml	Load	field_free_thickness (um)	0	0	Set	▶ photon_level	17 🖯 detector
Output file (yan	nl) test.yaml	Generate	total_thickness (um)	40	40	^ Set	▶ shot_noise	18 class : 19
Load file (yar	nl) pyxel/io/config/settings_ccd.yaml	Load	nivel uset size (um)	10	10	* ^	V tars	20 🖯 geomet
▼ PyXEL Pipeline Ru	nner		pixei_vert_size (um)	10		• <u>Set</u>	simulation_mode cosmic_ray Set	22 row:
Output file (fi	ts) data/pyxel/output_image_???.fits		pixel_horz_size (um)	10	10	🗘 Set	running_mode geant4 geant4 Set	23 col:
Sta	te _	Run	readout_nodes	1	1	🗘 Set	particle_type proton proton Set	25 dep]
▼ Parametric Config	uration		sensor_geometry			Set	inital_energy random random Set	26 fiel 27 pixe
Run Mode	single ○ embedded ○ sequential	Set	frame			Set	particle_number 500 500 Set	28 pixe 29 - rea
Sequence 0 _	initial eners 🛊 100, 200, 300		Material Section				incident angles	30
Sequence 1 _	÷		 Environment Section 					31 materi 32 clas
Sequence 2 -	\$		temperature (K)	300	300	▲ Set	starting_position - Set	33 mate
Sequence 3 -	\$		tetel instales des (MeXIII)		0	×	spectrum_file pyrel/models/tars/data/pyrel/models/tars/data/i	34 <u>n_ac</u> 35 <u>n_dc</u>
Sequence 4 -	\$		total_ionising_dose (wev/g)	80000	88+4	Set	random_seed Set	36 37 - enviro
▼ Models			(MeV/g)	0	0	Set	▶ fixed_pattern_noise	38 clas
photon generatio	on ⊗ load image		▼ CCDCharacteristics	Section			▼ cdm	40 tota
	photon level state hoise		qe	0.5	0.5	🗘 Set	beta_p 0.8 0.9 Set	41 🖻 niel
opti	cs		eta	0.5	0.5	A Set	beta_s 0.6 0.8 Set	43 🖯 charac
charge generation	on 🕑 photoelectrons		sy (V/-e)	0.000001	0.000001	A Sat	vo 8e-11 9e-11 Set	44 clas 45 ge:
				0.000001		· ·		46 eta:
charge collectio	on fixed pattern noise		amp	1	· ·	Set		48 amp:
charge transf	er edm		a1	100	100	Set	t 0.02048 0.02048 Set	49 a1: 50 a2:
charge measureme	nt 🔄 output node noise		a2	65536	65536	🗘 Set	st 0.000005 Set	51 fwc:
readout electroni	CS CS		fwc (electrons)	2800	2800	Set	parallel_trap_file pyxel/models/odm/cdm_ pyxel/models/odm/cdm_ Set	52 fwc_ 53 Dias
			fwc_serial (electrons)	3000	3000	^ Set	serial_trap_file pyxel/models/odm/cdm pyxel/models/odm/cdm_ Set	54 55
							▶ output_node_noise	56 🗢 pipeline
								57 Class:

The GUI and a YAML config file of Pyxel framework

The architecture of Pyxel and its pipeline

david.lucsanyi@esa.int

http://sci.esa.int/pyxel

d_free_thickness: l_vert_size: 10. l_horz_size: 10.

serial: 3000 _voltage: 50.

→ SERESSA 2018

12-16 Nov. 2018, ESA/ESTEC

[1] A. Short et al., "An analytical model of radiation-induced Charge Transfer Inefficiency for CCD detectors", Monthly Notices of the Royal Astronomical Society 430(4), 2013. [2] D. Lucsanyi et al., "Pyxel: a novel and multi-purpose Python-based framework for imaging detector simulation", Proc. SPIE 10709, 2018. [3] F. Biscani & D. Izzo., Pagmo 2.9, DOI:10.5281/zenodo.1406840, 31. Aug. 2018.

European Space Agency