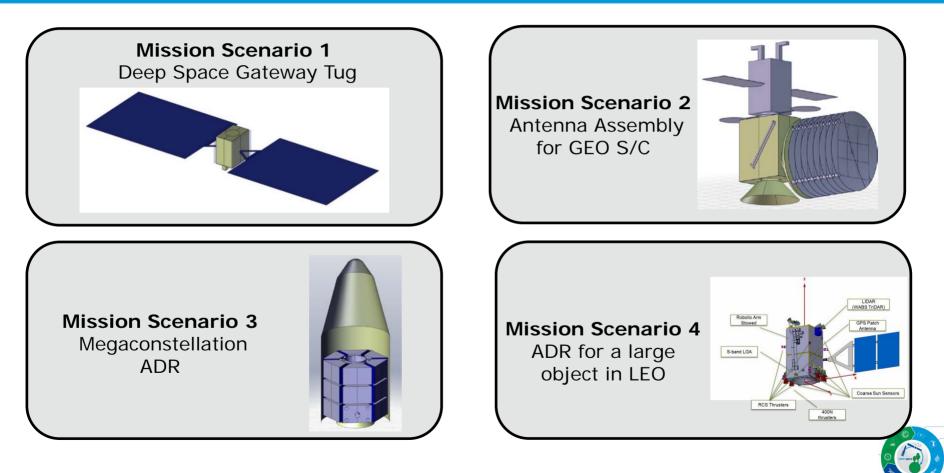
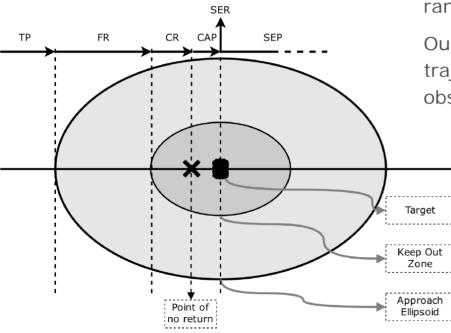


Guidance, Navigation & Control building blocks for Space Servicing Vehicles & Active Debris Removal missions


(GNC B² 4 SSV & ADR)

ESA UNCLASSIFIED – For Official Use

Requirements / sub-system functions (1/3)



GNC engineering approach

- Try to harmonize GNC modes with ground operations and system needs
- Definition of GNC requirements and functionalities in a generic approach that can be easily 'missionized'

Rendezvous phase \Rightarrow relative navigation (range & range-rate)

Outside **Approach Ellipsoid** \Rightarrow passively safe trajectories + range can be derived from other observations (navigation filter with long latency)

Inside **Approach Ellipsoid** \Rightarrow range obtained directly from sensor (e.g. NAVCAM+IP)

Keep-Out Zone \Rightarrow relative pose (attitude & COM position)

Point of No Return \Rightarrow last chance to perform Collision Avoidance Maneuver (CAM)

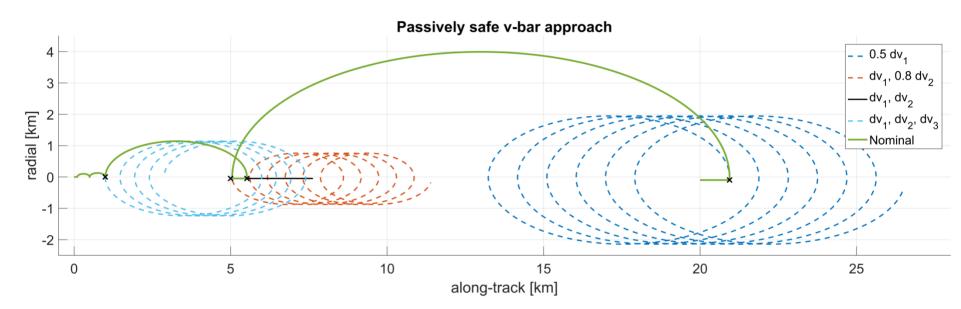
Requirements / sub-system functions (1/3)

- GNC shall ensure that during rendezvous phase outside the Approach Ellipsoid (AE) the SSV shall be in passively safe trajectories
 - If a planned maneuver is interrupted or not executed, collisions are avoided during at least DD days
 - DSG & GEO: AE @ 2 km (TBC) , DD = 7 days (TBC)
 - e.deorbit & ADR: AE @ 200 m , DD = 1 day (TBC)
- GNC shall provide reliable range and range-rate data relative to the target vehicle during all phases of rendezvous
- GNC shall be able to provide reliable 6 DOF relative state (pose) when the SSV is inside the Keep-Out Zone (KOZ)
 - KOZ @ 200 m (TBC)
- GNC shall be able to compute collision risk with the target vehicle continuously during the rendezvous phase

Requirements / sub-system functions (2/3)

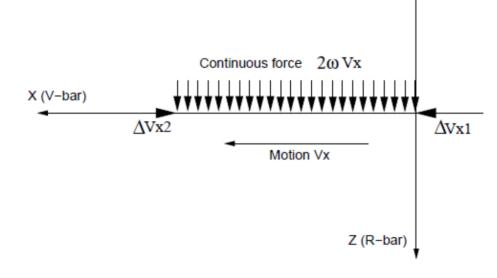
- GNC shall be able to execute Collision Avoidance Maneuvers (CAM)
 - At all times beyond **Point-of-No-Return**
- GNC shall ensure that after the a CAM execution the SSV shall be on a 7 day (TBC) safe free drift trajectory
 - 1 day (TBC) for e.deorbit & ADR cases
- Docking and cooperative capture
 - GNC shall allow docking to any particular docking port
 - Approach along straight line in orbital frame towards capture point
 - GNC shall determine the 6 DOF relative state for any docking envelope
 - The docking envelope is comprised of closing rate, lateral rate, pitch/yaw rate, roll rate, lateral misalignment, pitch/yaw misalignment and roll misalignment.

Requirements / sub-system functions (3/3)



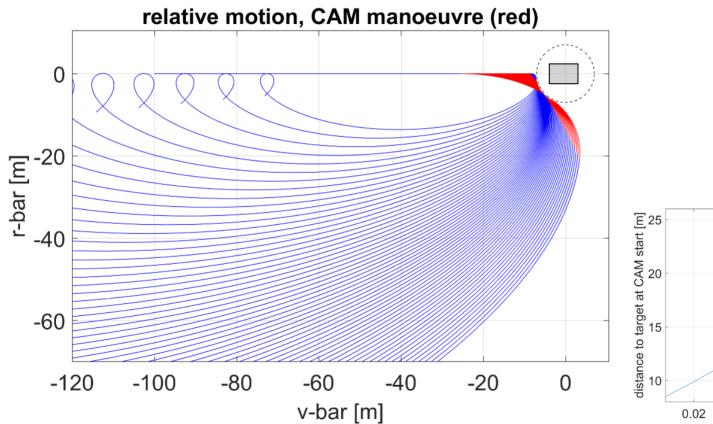
- Uncooperative capture
 - GNC shall allow approach along a straight line in inertial frame not requiring continuous thrust
 - Permits EP approach along target angular momentum vector
- GNC shall autonomously achieve and maintain a 3-axis stabilized attitude in any relevant reference frame during all rendezvous phases
- GNC system shall operate autonomously with no ground intervention between check points
 - Check points shall be at passively safe hold points
- GNC shall be able to interact with a robotic manipulator (if any)

Baseline Design (MS1 & MS2) V-bar approach

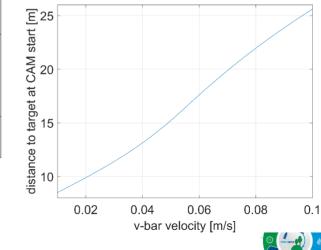

- 4 hops
- 8 radial manoeuvres
- 13.0 m/s
- T = 6 orbits

Passively safe at each point of the trajectory (also during manoeuvres)

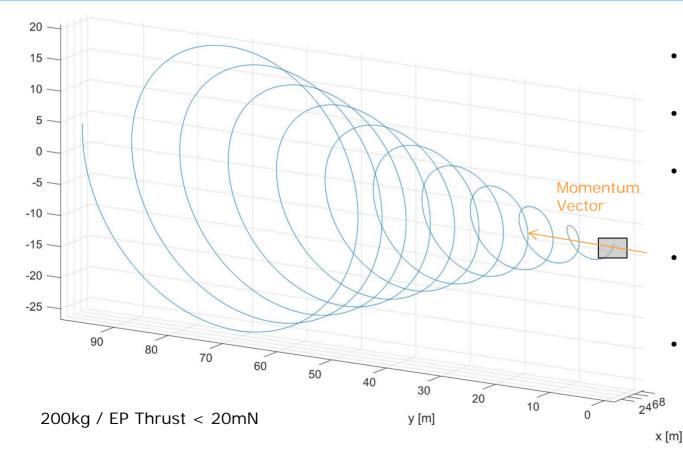
Baseline Design (MS1 & MS2) Terminal approach (V-bar)


- Forced motion
- Continuous manoeuvres
- T = minutes

Not passively safe!



Baseline Design (MS1 & MS2) Collision Avoidance Manoeuvre (CAM)



- Approach velocity: 1—10cm/s
- Minimal distance to target: 7m
- Point-of-No-Return: 8-26m

Baseline Design (MS3 & MS4) Fixed Inertial Frame Approach

- Approach along momentum vector of target
- i.e. fixed approach vector in inertial frame
- One ellipse per orbit (not avoidable b/c of orbit dynamics)
- Thrust only in radial & normal direction (twice per orbit)
- Target always seen by relative navigation cameras

Equipment – MS1 & MS4

SSV	#	Weight [kg]	Power [W]
GPS Receiver	2	0.02	0.85
Inertial Reference Unit	2	4.5	14
Sun Sensor	6	0.1	0
Star Tracker	2	2.6	12
LIDAR Rendezvous Sensor	2	8	30
Multispectral Camera (near range)	2	2	6
Narrow Angle Camera (far range)	2	4	4
		43	65

Relative Navigation

AM (only MS1)	#	Weight [kg]	Power [W]
GPS Receiver	2	0.02	0.85
Inertial Reference Unit	2	4.5	14
Sun Sensor	16	0.1	0
LIDAR Rendezvous Sensor	2	8	30
Multispectral Camera (near range)	2	2	6
		31	51

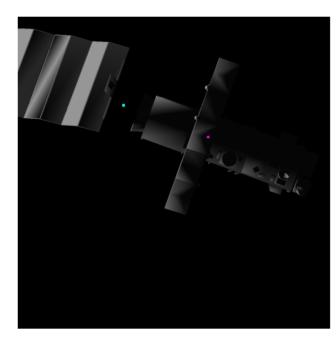
Relative Navigation

Equipment – MS2

SSV	#	Weight [kg]	Power [W]	
GPS Receiver	2	0.02	0.85	
Inertial Reference Unit	2	4.5	14	
Sun Sensor	6	0.1	0	
Star Tracker	2	2.6	12	
Multispectral Camera (near range)	2	2	6	Relative
Narrow Angle Camera (far range)	2	4	4	Navigatior
		27	38	

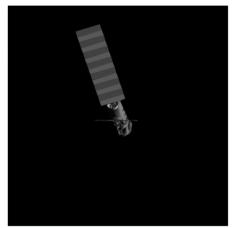
Equipment – MS3

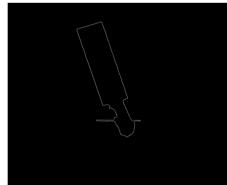
SSV	#	Weight [kg]	Power [W]	
GPS Receiver				
Inertial Reference Unit				Satellite
Sun Sensor				Bus
Star Tracker				
Multispectral Camera (near range)	2	2	6	Relative
Narrow Angle Camera (far range)	2	4	4	Navigation
		12	10	

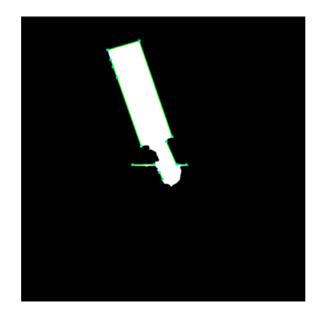


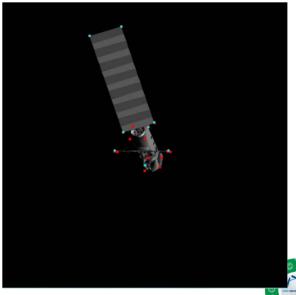
Vision-based Navigation Building Blocks (1/5)

- ALL missions: camera-based LOS-only relative navigation
 - Image processing based on centroiding
 - Unscented Kalman Filter for COM-COB correction
 - Semi-autonomous attitude guidance

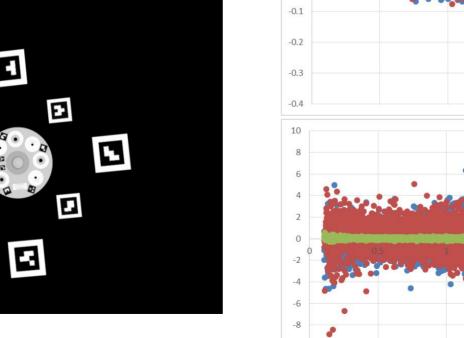




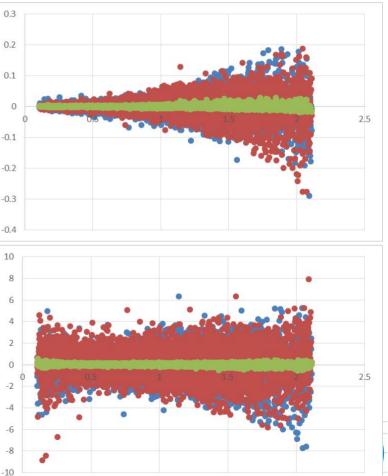

Vision-based Navigation Building Blocks (2/5)



- ALL missions: camera-based relative pose estimation navigation
 - Image processing based on 'corner' detection at line intersection
 - Unscented Kalman Filter including 'corner' matching
 - FDIR and/or closed-loop GNC inside KOS


ESA UNCLASSIFIED - For Official Use

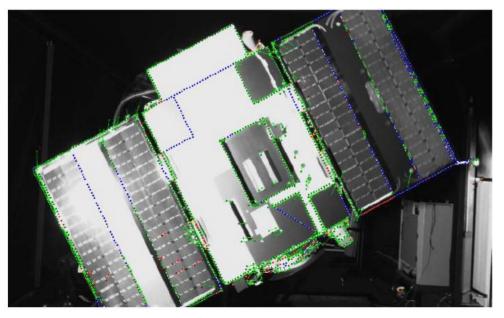
Vision-based Navigation Building Blocks (3/5)

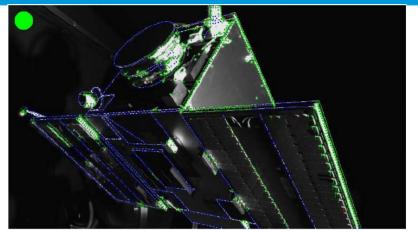

- MS1 & MS2: Docking or capture cooperative target
 - Use (multi-spectral) markers

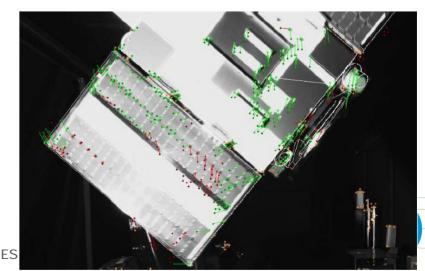
-

5

ESA






Vision-based Navigation Building Blocks (4/5)

- MS3 & MS4: Capture or contactless detumbling uncooperative target
 - Model matching aided by unknown feature tracking

Conclusions

- Identification of GNC building blocks to cover GNC requirements for SSV & ADR missions
- Passively safe trajectories need to be designed considering all sources of uncertainty and error (e.g. navigation, maneuver execution error)
- Some technologies are better known
 - Optical relative navigation for far rendezvous
 - 3D LIDAR based terminal rendezvous and docking
- Some other requires more development
 - Relative pose estimation for tumbling targets
 - Contactless detumbling
 - Terminal approach using EP

