

DEMISEABLE PROPELLANT TANKS Design and Test of Materials and Technologies - Final Results –

ITT AO/1-8301/15/NL/SW

ESA CleanSpace Industrial Days

23.-25.10.2018

CONTENTS

- 1. Scope of Technology
- 2. Material Testing
- 3. Summary & Conclusion

01 Scope of Technology

DEMISEABLE PROPELLANT TANK – Scope of Technology

- Applicability range
 - Priority 1: LEO platform medium size (100-200L, < Ø600mm)
 - Priority 2: LEO platform small size (37-50L, < Ø420mm)
- Actual Technology
 - Titanium tank (melting point ~ 1600°C)
 - Surface Tension PMD or membrane
 - ➔ Non-demiseable
- Proposed Demiseable Technology
 - Material: <u>aluminium alloy (melting point ~ 600°C)</u>
 - Surface Tension (PMD) or membrane (PED)

DEMISEABLE PROPELLANT TANK – Scope of Technology

In the study the following areas are investigated in order to support the demiseable tank trade-off:

- Compatibility of Al-Mg-Sc alloy (5028) with hydrazine
- Wettability of PMD material with hydrazine and candidate aluminium alloys (AA2219, AA2050, AA5028)
- Aluminium pipe transition joint solutions (Ti3Al2.5V for pipeline → AA2219 for tank)
- Demise properties of candidate aluminium alloys (AA2219, AA2060, AA5028)

\rightarrow The material test performed within the study will focus on the above mentioned areas.

02 Material Testing

DEMISEABLE PROPELLANT TANK – Test Plan

Hydrazine Compatibility Test (1 month @ 71°C)

Matorial	Weld technique	Reference	Immersion in	Test		
Material		(w/o immersion)	Hydrazine	Compatibility test	Additional test	
AA5028 (Al-Mg-Sc)	Base material	(5) tensile sample	(5) tensile sample	 Visual insp. 	Tensile	
Joint (1/4") 6082 / 2219	Manual TIG	(7) welded pipe	(7) welded pipe	 Mass change Prop. analysis 	Leak/proofTensileMicrosection	
Joint (1/4") 6082 / Ti6Al4V	RFW	(7) welded pipe	(7) welded pipe	Catalytic effect		

Hydrazine Compatibility Test (1 month @ 71°C)

Results for AA5028 (Al-Mg-Sc) :

•	Visual inspection:	no visual change	OK
•	Catalytic effects:	req. < 2.5 bar/month	OK
•	Mass change:	req. < 1.0mg	OK
•	Tensile strength:	req. < 10% reduction	OK
•	Propellant analysis:	within spec. MIL-PRF-26536	OK

For AA5028, basic compatibility with hydrazine has been shown.

Verification for long term verification and increase of diagnostics after and during exposure is still needed.

Hydrazine Compatibility Test (1 month @ 71°C)

Results for transition joint AA6082/Ti6Al4V (1/4") :

- Visual inspection: no visual change
- Catalytic effects: req. < 2.7 bar/month
- Mass change:
- Tensile strength:
- Propellant analysis: within spec. MIL-PRF-26536
- Microsection:
- Leak test:

- req. < 10% reduction s: within spec. MIL-PRFno sign of corrosion
- req. <1e-6 scc/s

reg. < 1.0 mg

OK

Titanium alloy Ti6Al4V

Bild 4: Probe S/N 001, Prod. Nr. 17-09/03-1, nach Zugversuch, Titan rechts, 1.4307 eingeschnürt, Stützdorn verklemmt

Conclusion :

For the transition joint **AA6082/Ti6Al4V** (1/4"), **basic compatibility with hydrazine has been shown**. All samples provided the required joint performance with and without immersion in hydrazine.

Aluminium alloy AA6082

Hydrazine Compatibility Test (1 month @ 71°C)

Results for welded joint AA6082/AA2219 (1/4") :

- Visual inspection: no visual change
- Catalytic effects: req. < 2.7 bar/month
- Mass change: •
- req. < 10% reduction Tensile strength:
- Propellant analysis: within spec. MIL-PRF-26536
- Microsection:
- Leak test:

no sign of corrosion req. <1e-6 scc/s

reg. < 1.0 mg

- some discoloration observed
- ** leak test not possible due to porosity in the welds

Conclusion : For the transition joint AA6082/AA2219 (1/4"), compatibility with hydrazine was partly achieved due to the fact that the welding process (at this stage of development) does not yet provide the required weld quality.

OK

OK

OK

OK

OK

igure 3: ATJ AA2219-AA6082 S/N 07 after tensile testing, support

DEMISEABLE PROPELLANT TANK – Test Plan

- Hydrazine Wettability Test (1 month @ 71°C)

Material	Weld technique	Reference (w/o immersion)	Immersion in Hydrazine	Test	
AA2219	Base material	(3) contact angle	(3) contact angle	 Visual inspection Contact angle measurement (Wilhelmy plate method) 	Enclosure
AA2060	Base material	(3) contact angle	(3) contact angle	F	Elevator Measurement control
AA5028	Base material	(3) contact angle	(3) contact angle	air liquid	

Hydrazine Wettability Test (after 1 month @ 71°C)

There have been measurements of the contact angle at five temperatures for three types of Aluminium at probes which were immersed in Hydrazine and not immersed reference probes.

The main conclusions concerning the usage of Aluminium are:

- The standard deviation of all measurements is less than 10%. Therefore **reproducibility is proven**.
- Nearly all measured forces at Aluminium are slightly higher than the measured forces at Titanium. This denotes a tendency for smaller contact angles at Aluminium surfaces.
- There is **no significant difference** between immersed and non-immersed probes and different types of Aluminium.

The following assumption is therefore confirmed for wettability of Aluminium in Hydrazine:

Since the wetting conditions are very similar for Aluminum and Titanium when using Hydrazine it can be stated that all functional design aspects used with titanium **PMD can be used as is also with Aluminum**.

DEMISEABLE PROPELLANT TANK - Test Plan

Thermophysical Test

Instead of performing "real" demiseability testing in plasma wind tunnel, it is proposed to analyse precisely thermos-physic properties of the aluminium alloy selected during the first phase of the project.

Material	Weld technique	Test		
2219	Base material	Density		
2050	Base material	Specific heat CpT(melting)Heat of Melting		
5028	Base material			

Thermophysical Test

Results synthesis:

The ranking of the aluminium alloys based on the total specific energy criteria brings **AA2219 as the most suitable material for a demiseability point of view** (for the same initial tank mass). On contrary, aluminium AA2050 presents the highest values for the total specific energy criteria. This represents an increase of less than 7 % of the criteria compared to the alloys AA2219.

However, DRAMA analysis show that these variations are marginal for tank demiseability (within 1% in terms of demise altitude) – see next slide

DEMISE ENERGY	$\int_{T_0}^{T_m} cp.dT + \Delta H_m$ (kJ/kg)		
Material			
AA2219	949 (ref.)		
AA5028	972 (+2.4%)		
AA2050	1014 (+6.8%)		

DEMISEABLE PROPELLANT TANK – Demise Analysis

DRAMA Analyses

Results:

- The analysis performed with DRAMA indicates that the aluminium tanks always demise for a break-up altitude of 78km, however none of the alloys is found to demise for break-up altitude of 65 km.
- The choice of aluminium alloys, the tank size (within 100L - 200L) and the safety factors used for dimensioning have little influence on the results. Variations on material properties (melting point, Cp, heat of fusion, emissivity) and the different tank masses have a negligible impact on demiseability when compared to the break-up altitude.
- Titanium tanks do not demise at all

03 Summary & Conclusion

DEMISEABLE PROPELLANT TANK – Final Trade-off

	Demiseable Tank - Master Trade-off	Tank 1a	Tank 1b	Tank 2a	Tank 2b	Tank 3a	Tank 3b
	Material	2219	2219	5028	5028	2060	2060
	Condition	T8	Т8	H116	H116	T8	Т8
	Weld process	TIG	TIG	tbd	tbd	tbd	tbd
	Forming process	forging	forging	tbd	tbd	tbd	tbd
	Propellant Delivery System	PED	PMD	PED	PMD	PED	PMD
	Mounting	equator	equator	equator	equator	equator	equator
	Pipe I/F transition	bolted joint (*)	bolted joint (*)	bimetal	bimetal	bimetal	bimetal
Weight	Criteria	Evaluation	(Max: 5 / Min: 1)				
10	Demiseability	5	4	5	4	5	4
10	Metal propellant compatibility - hydrazine	4	4	3	3	3	3
6	Metal propellant compatibility - green ADN	2	2	2	2	2	2
4	Metal propellant compatibility - green H2O2	1	1	3	1	1	1
10	PMD wettability / PED compatibility - hydrazine	5	5	5	5	5	5
6	PMD wettability / PED compatibility - green ADN	2	3	2	3	2	3
4	PMD wettability / PED compatibility - green H2O2	2	1	2	1	2	1
5	Dry Mass	3	3	3	3	5	5
5	Development cost	4	4	2	2	2	2
5	Development time	4	4	2	2	2	2
5	Development risks	4	4	2	2	2	2
10	Recurring cost	4	4	3	3	3	3
5	Material procurement (lead time, etc.)	4	4	4	4	3	3
	Sec.						
	Score	311	303	269	253	266	258

DEMISEABLE PROPELLANT TANK – Main Outcomes

- The replacement of Titanium with an Aluminium alloy is confirmed to be the most promising approach given the major impact in terms of tank demiseability.
- The break-up altitude was found to be the major parameter to drive demiseability, much more than the choice of the aluminium alloy.
- In order to minimize development risks and cost, the recommended approach is to use the conventional 2219 alloy technologies, available from launchers, and to extend it to LEO platform application. It is expected that the mass penalty (4kg heavier than titanium) is acceptable when compared to the necessity of a controlled re-entry.
- A membrane tank (PED) is the preferred solution rather that surface tension tank (PMD) due to the fact that its impact on tank demiseability can be neglected (low point of fusion of polymeric diaphragm) and the tank can be better represented within the demise analysis tools
- Innovative tank technologies, involving AI-Li or AI-Mg-Sc aluminium alloys, may be developed and introduced later on to optimize the performance.

DEMISEABLE PROPELLANT TANK – Further Work

Demiseability :

- **u** Further tests are necessary in order to better characterize some specific aspects of the Aluminium alloys selected.
- Representativeness of the simulation taking into account re-entry phenomenon (tumbling, heat repartition, material behaviour evolution) has to be shown during next maturation phase
- Material compatibility:
- Stress corrosion cracking performances still have to be verified by a dedicated SCC test campaign.
- The compatibility with green propellants such as ADN based is still to be demonstrated as data are not available today.
- Transition joints:
 - The need of replacing Titanium with Aluminium for the manufacture of propellant tanks introduces the problem of producing a joint between the tank and the chemical propulsion system pipework which generally is made of Titanium 3AI2.5V
 - There is an existing joint Ti6Al4V/AA6082 developed under ESA contract. The study showed that the welding of AA6082 to AA2219 (material assumed for the tank) is feasible. However, several issues have been met with this weld (e.g. weld porosity), which can only be solved in the frame of qualification program, when the design of the weld is frozen. In general it is recognized that a design involving multiple transition welds in series will decrease the reliability of the connection; therefore the development of a specific A2219/Ti6Al4V (or A2219/Ti3Al2.5V) transition joint is recommended. Otherwise a bolted solution should be adopted.

DEMISEABLE PROPELLANT TANK

Thank you for your attention!

