Feasibility Study of Active Debris Mitigation for Mega Constellations
Table of contents

- Study logic
 - reference constellations

- Mitigation Method
 - Problematic & ADR functional

- Collision risk
 - From debris & among constellation

- Mission Overview
 - Mission analysis & remover selection

- ADR Operational concept
 - MEGA 1000

- ADR Operational concept
 - TAS 3200

- Recommendations and conclusion
Study logic
Study

ITT ESA 8815 Managed by Robin Biesbroek

GSP funded contract

Thales in France and Thales in Italy team

- Carole Billot, Raphael Hache, Isabel Moore, Andrea Sita
- Mauro Pasquinelli, Maria Valeria Catullo, Simona Ferraris

- 12 months study
- KO end April 2017
Logic

Phase 1: Constellations identification
- Constellations defined by ESA
- TAS marketing inputs
- Task 1A: Market analysis
- 4 Constellations representative of the future

Phase 2: Constellations/ADR trade-off
- 4 Phase 1 Constellations
- ADR studies background
- Operators business plan
- Task 1B(C/D): Reliability / Collision analysis; scenarios identification; Preliminary cost analysis for each scenario Market assessment
- 2 Constellations where ADR is a promising SDM solution

Phase 3: Consolidation of ADR business plan
- 2 Constellations defined with ESA
- Preliminary ADR constraints
- D4R studies background
- ADR conceptual Design
- Constellation design impact
- Task 2(A/B): Mission profile; service module definition; technologies trade-off Assess programmatic and cost

Phase 4: Recommendations
- Operators feedback
- SDM identified solutions
- Task 2C: Prepare recommendations for updates of SDM standards
- Recommendations for updates on Debris Mitigation applicable policies

Creativity sessions
Reference constellations

Goal to have a portfolio with significant differences on the following key parameters:

- Number of satellites
- Altitude
- Type of propulsion

Others parameters deducted from the knowledge of the existing projects

MEGA 1000
- 1080 sat of 200 kg – Elec
- 20 planes 54 sat – 85°/1100 km
- 20 Launch/year - 18sat/LV

MEGA 200
- 200 sat of 1000 kg - Chemical
- 10 planes 20 sat – 85°/1100 km
- 5 Launch/year – 10 sat/LV

TAS 3200
- 3200 sat of 380 kg - Chemical
- 2*32 planes 50 sat – 53°/820 km
- 26 Launch/year – 25 sat/LV

TAS 100
- 108 sat of 1200 kg – Elec
- 6 planes 18 sat – 90°/1400 km
- 6 Launch/year – 8 sat/LV
Mitigation methods

• Problematic & ADR functional
Problematic of megaconstellation operational lifetime
Solution

- **Reliability increase**
 - Design
 - Redundancy
 - In-space maintenance
 - EOL kit on-board

- **Deorbitation and natural re-entry**
 - 25 years
 - 5 years

- **Reorbitation**

- **Deorbitation and controlled re-entry**

- **Deorbit kit plugged by chaser/remover**
ADR to reduce collision risk and debris generation

Satellites May Experience Collisions ➔ Collision Risk Analysis

Satellites May Experience Internal Failures ➔ Input: 10% of Probability of Loss of Disposal/CAM functions

Large numbers of satellites, Long Infrastructure Time ➔ Higher Risk

Dynamic issue
Any collision or critical failure modifies the environment, increasing the risk.
ADR reference operational activities

\[\text{cost}_{\text{ADR}} = N_{\text{removers}} \cdot \text{cost}_{\text{remover}} + N_{\text{launchers}} \cdot \text{cost}_{\text{launcher}} + \text{cost}_{\text{GS}} + \Delta \text{cost}_{\text{constellation}} \]

Cost of ADR is the cost of keeping clean the operational orbit

Different strategies w.r.t. Strategies, Technologies and allocation to:
- Constellation system
- ADR system
Collision Risk

• With Debris
• Among constellation
Risk Evaluation: ESA MASTER 2009 Environment

Evaluation of the risk of losing satellites of constellation caused by impact with untrackable and trackable debris

Untracked debris:
Risk of losing the satellites caused by an impact with untrackable debris (diameter <10cm):
- failure of internal items
- failure of external items

Tracked debris:
- Risk of losing the satellites caused by an impact above the catastrophic threshold (40 J/g)

Debris environment vs Altitude (ESA MASTER 2009)

<table>
<thead>
<tr>
<th>Debris environment</th>
<th>MEGA-1000</th>
<th>MEGA-200</th>
<th>TAS-3200 (780km)</th>
<th>TAS-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-catastrophic (operational)</td>
<td>7.94E-04</td>
<td>3.18E-03</td>
<td>2.96E-03</td>
<td>2.4E-03</td>
</tr>
<tr>
<td>Catastrophic – Operational</td>
<td>3.57E-06</td>
<td>1.35E-05</td>
<td>5.42E-05</td>
<td>5.39E-06</td>
</tr>
<tr>
<td>Catastrophic - Deorbiting</td>
<td>3.36E-06</td>
<td>3.48E-05</td>
<td>9.46E-06</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Evaluation of Collisions

Non-catastrophic (first set)

Such number can be mitigated by providing adequate MMOD protection and physical configuration

Note: Using 2009 MMOD Environment → Very optimistic

Catastrophic collisions
– They depend on the amount of defunct or decaying satellites → influenced by ADR and time for decay

TAS3200 – amount of defunct satellites on operational orbit

TAS3200 – amount of decaying satellites, comparison of decay strategies

Probability of catastrophic collision between 2 satellites among the constellation not included

(90% of satellites decaying)
Mission Overview

- Mission analysis of the 4 constellation cases
- Launcher selection
- Removers selection
ADR Space and Launch Segment Strategies and Options

Space Segment configurations & number of services

<table>
<thead>
<tr>
<th>Specific Characteristics</th>
<th>Chemical One-shot</th>
<th>Chemical Multi mission</th>
<th>Electrical Multi-mission</th>
<th>Electrical with DOK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Net or simplified capture system</td>
<td>Robotic Arm</td>
<td>Robotic Arm</td>
<td>Robotic Arm DOK installation (higher complexity)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of services, Soyuz</th>
<th>EP Deorbit without DOK</th>
<th>EP Deorbit with DOK</th>
<th>EP Graveyard</th>
<th>CP Deorbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mega 1000</td>
<td>25</td>
<td>17</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Mega 200</td>
<td>N/A (1)</td>
<td>(Controlled re-entry with DOK) 9</td>
<td>13</td>
<td>(Controlled re-entry) 1</td>
</tr>
<tr>
<td>TAS3200</td>
<td>(uncontrolled) 35</td>
<td>22</td>
<td>N/A (11)</td>
<td>(uncontrolled) 14</td>
</tr>
<tr>
<td>TAS 100</td>
<td>N/A (1)</td>
<td>(Controlled re-entry with DOK) 9</td>
<td>16</td>
<td>(Controlled re-entry) 1</td>
</tr>
</tbody>
</table>

Launch strategy options:

- **One remover per launcher**
 - Launch when needed

- **Batch of Removers**
 - Stacked launch of removers, moving in different planes with RAAN drift

- **Shared Launch with constellation**
 - The remover is sent together with constellation satellites in predisposed planes. Favourable for size of spacecraft comparable with constellation sats

Thales Alenia Space Internal
Trade-off Mitigation solution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Passive debris mitigation</th>
<th>Active debris mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of additional launches</td>
<td>Constellation design modification</td>
<td>ADR single shot</td>
</tr>
<tr>
<td>Additional mission control functions complexity index</td>
<td>Constellation increase of reliability</td>
<td>ADR multi removal</td>
</tr>
<tr>
<td>Number of additional Ground Stations & Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servicer complexity index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added cost for Constellation Satellites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase of single satellite lifetime because of increase of available propellant (no self-disposal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Compliance with future regulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction of constellation size (Reduction of constellation sat. needed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long term sustainability of the orbit and decrease of CAMs because of failed satellites in the operational orbit which cannot be removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added cost for removers (as % of the constellation cost)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of additional Ground Stations & Control & Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added cost for Constellation Satellites</td>
<td></td>
</tr>
<tr>
<td>Increase of single satellite lifetime because of increase of available propellant (no self-disposal)</td>
<td></td>
</tr>
<tr>
<td>Potential Compliance with future regulations</td>
<td></td>
</tr>
<tr>
<td>Additional Services</td>
<td></td>
</tr>
<tr>
<td>Reduction of constellation size (Reduction of constellation sat. needed)</td>
<td></td>
</tr>
<tr>
<td>Long term sustainability of the orbit and decrease of CAMs because of failed satellites in the operational orbit which cannot be removed.</td>
<td></td>
</tr>
<tr>
<td>Added cost for removers (as % of the constellation cost)</td>
<td></td>
</tr>
</tbody>
</table>

MEGA 1000

TAS 3200

ESTEC Industrial days
19/06/2018
ADR Mega 1000
Operational concept
ADR Trade-off
ADR MEGA 1000 Configuration

Operations

ADR launch within the population of the constellations
- Verification IOT
- Waiting phase on optimal orbit before rescue
MEGA1000: Collision Risk Mitigation Effects

Effects for the space environment:
- 20% more satellites (incl. ADR) decaying at lower orbit
- Drastic reduction of long-term pollution

Effects for the constellation:
- 10% more operational satellites
- No failed satellites close to operational orbit (reduction of risk of constellation loss and of CAM needs)

With ADR + Less Decay Time
(25y→5y)

With ADR

No ADR
MEGA1000: Evaluation with the 2009 MMOD environment

Preliminary calculations show that one catastrophic collision could be prevented (with ESA MASTER 2009 env.).
ADR MEGA 1000

Overall Architecture

Wet Mass under 200 kg

- Compatible with rest of constellation

<table>
<thead>
<tr>
<th>SVM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Propulsion</td>
<td>Electric - ARDE 6.2 - 2 * 13mN = 39mN</td>
</tr>
<tr>
<td>Architecture</td>
<td>Derived from OneWeb</td>
</tr>
<tr>
<td>Power</td>
<td>2 * SA wing</td>
</tr>
<tr>
<td>Avionics</td>
<td>SMU with LEON2/3 FT Processor</td>
</tr>
<tr>
<td>TTC</td>
<td>Ka-Band</td>
</tr>
<tr>
<td>Payload</td>
<td></td>
</tr>
<tr>
<td>Capture</td>
<td>2 Net Capture Systems</td>
</tr>
<tr>
<td>RDV sensors</td>
<td>2 * 2D camera</td>
</tr>
</tbody>
</table>
ADR TAS 3200
Operational concept
Collision Risk Mitigation Effects for TAS3200

No ADR

- ~10% more satellites decaying at lower orbit
- Drastic reduction of long-term pollution

With ADR

- Additional ADR system
- Limited number of failed satellites close to operational orbit (reduction of risk of constellation loss and of CAM needs)

With ADR + Less Decay Time (5y→1y)

Effects for the space environment:
- Increased number of satellites decaying at lower orbit
- Reduction of long-term pollution

Effects for the constellation:
- Additional ADR system
- Limited number of failed satellites close to operational orbit (reduction of risk of constellation loss and of CAM needs)
Effect on catastrophic collisions (with 2009 MMOD environment)

From > 10 collisions to ~0.3 collisions in 50 years (with ESA MASTER 2009 env.)
ADR TAS 3200 Trade-off

Soyuz Launch

Evaluation of number of services per launch

- Launcher performance
- Relative cost of the ADR
- Electric versus Chemical propulsion
- Reliability
- Accommodation under Soyuz fairing
- Number of services per ADR
- ADR lifetime

1500 kg ADR Main electric propulsion

Sensitivity analysis supports selection of:
- Thrusters -> QT6
- Reliability -> 0.95
- Re-entry -> non-controlled
- Accommodation -> stack

ADR TAS 3200 Trade-off

Soyuz Launch

Evaluation of number of services per launch

- Launcher performance
- Relative cost of the ADR
- Electric versus Chemical propulsion
- Reliability
- Accommodation under Soyuz fairing
- Number of services per ADR
- ADR lifetime

1500 kg ADR Main electric propulsion

Sensitivity analysis supports selection of:
- Thrusters -> QT6
- Reliability -> 0.95
- Re-entry -> non-controlled
- Accommodation -> stack

ADR TAS 3200 Trade-off

Soyuz Launch

Evaluation of number of services per launch

- Launcher performance
- Relative cost of the ADR
- Electric versus Chemical propulsion
- Reliability
- Accommodation under Soyuz fairing
- Number of services per ADR
- ADR lifetime

1500 kg ADR Main electric propulsion

Sensitivity analysis supports selection of:
- Thrusters -> QT6
- Reliability -> 0.95
- Re-entry -> non-controlled
- Accommodation -> stack

ADR TAS 3200 Trade-off

Soyuz Launch

Evaluation of number of services per launch

- Launcher performance
- Relative cost of the ADR
- Electric versus Chemical propulsion
- Reliability
- Accommodation under Soyuz fairing
- Number of services per ADR
- ADR lifetime

1500 kg ADR Main electric propulsion

Sensitivity analysis supports selection of:
- Thrusters -> QT6
- Reliability -> 0.95
- Re-entry -> non-controlled
- Accommodation -> stack

ADR TAS 3200 Trade-off

Soyuz Launch

Evaluation of number of services per launch

- Launcher performance
- Relative cost of the ADR
- Electric versus Chemical propulsion
- Reliability
- Accommodation under Soyuz fairing
- Number of services per ADR
- ADR lifetime

1500 kg ADR Main electric propulsion

Sensitivity analysis supports selection of:
- Thrusters -> QT6
- Reliability -> 0.95
- Re-entry -> non-controlled
- Accommodation -> stack

ADR TAS 3200 Trade-off

Soyuz Launch

Evaluation of number of services per launch

- Launcher performance
- Relative cost of the ADR
- Electric versus Chemical propulsion
- Reliability
- Accommodation under Soyuz fairing
- Number of services per ADR
- ADR lifetime

1500 kg ADR Main electric propulsion

Sensitivity analysis supports selection of:
- Thrusters -> QT6
- Reliability -> 0.95
- Re-entry -> non-controlled
- Accommodation -> stack
ADR TAS 3200

Overall Architecture

| SVM | Propulsion | Hybrid
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electric</td>
<td>MT-Aerospace L-XTA 3001 - 2 * QTB thruster</td>
</tr>
<tr>
<td></td>
<td>Chemical</td>
<td>MT Aerospace PTD-222I - 18 * 1N</td>
</tr>
<tr>
<td>Architecture</td>
<td>Derived from SpaceTug</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>2 * SA wing</td>
<td></td>
</tr>
<tr>
<td>Avionics</td>
<td>SMU with LEON2/3 FT Processor - ICU - PCDU</td>
<td></td>
</tr>
<tr>
<td>TTC</td>
<td>X-Band</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture</td>
</tr>
<tr>
<td>RDV sensors</td>
</tr>
</tbody>
</table>
Conclusion
Conclusion

For the 4 cases of mega-constellations considered in this study, the ADR solutions which give the best positive impact vs the initial baseline are:

- ADR one shot based on constellation platform for MEGA 1000
- ADR EP multi-mission with Soyuz for TAS 3200
- ADR impacts the operators business plan up to 30%
- For very large constellation, it is mandatory
- At one step, the revenue will stop because of catastrophic collision

- Constellation reliability increase is a favorable trend
- Analogies can be found with on-ground situation for Electrical and Electronic Equipment
 - Subjected to individual handling and management
 - Regulatory requirements exist for Waste EEE
 - For those requiring individual operations, end-of-life logistic cost is in the range from 20 to 30%.
Recommendations

Current regulations are not relevant with the emergence of mega-constellations

- Sustainable low earth orbit cannot be maintained with the 25 years decay orbit rule
- Recommendation to change Standards and Policies to prevent orbits becoming overpopulated with debris and to drive the constellation operators to use space responsibly and sustainably
- Solutions have to be considered at constellation level

Use of ADR for EOL constellation management

- Is necessary when the number of failed satellites in the operational orbit becomes unmanageable
- Is necessary to keep long-term business without endangering space activities
- Needs Operators/Industry to anticipate and « prepare » satellite
- Needs ADR technology ready with sufficient TRL
Thanks