Debris Workshop – ESTEC October 2018

Feasibility Study of Active Debris Mitigation for Mega Constellations

PROPRIETARY INFORMATIC

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space

THALES ALENIA SPACE INTERNA

<reference>

Table of contents

Study logic reference constellations

ADR Operational concept **MEGA 1000**

Mitigation Method Problematic & ADR functional

ADR Operational concept **TAS 3200**

Collision risk From debris & among constellation

Recommendations and conclusion

Mission Overview

Mission analysis & remover selection

PROPRIETARY INFORMATIO This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any ission of Thales Alenia Space, © 2018 Thales Alenia Space THALES ALENIA SPACE INTERNAL

Study logic

PROPRIETARY INFORMATION
This document is not to be reproduced, modified, adopted, published, transisted in any malerial form in whole ar in part nor disclosed to any third party without the prior written permission of Thats kalenia Space. © 2018 Thates Alenia Space

3

Study

ITT ESA 8815 Managed by Robin Biesbroek

GSP funded contract

Thales in France and Thales in Italy team

- 🛰 Carole Billot, Raphael Hache, Isabel Moore, Andrea Sita
- 🛰 Mauro Pasquinelli, Maria Valeria Catullo, Simona Ferraris
- 12 months studyKO end April 2017

document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space

Reference constellations

Goal to have a portfolio with significant differences on the following key parameters :

Number of satellites

- S. Altitude
- S Type of propulsion

Others parameters deducted from the knowledge of the existing projects

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space

Mitigation methods

• Problematic & ADR functional

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space THALES ALENIA SPACE INTERNAL

Problematic of megaconstellation operational lifetime

ESTEC Industrial days 19/06/2018

PROPRIETARY INFORMATION

— Solution

ADR to reduce collision risk and debris generation

Dynamic issue

Any collision or critical failure modifies the environment, increasing the risk

Satellites May Experience Internal Failures -> Input: 10% of Probability of Loss of Disposal/CAM functions

Large numbers of satellites, Long Infrastructure Time \rightarrow Higher Risk

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space

Tha a Thales / Learn

ADR reference operational activities

Different strategies w.r.t. Strategies, Technologies and allocation to:

- Constellation system
- ADR system

Cost of ADR is the cost of keeping clean the operational orbit

ESTEC Industriall days

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space

PROPRIETARY INFORMATION

Collision Risk

- With Debris
- Among constellation

PROPRIETARY INFORMATION
This document is not to be reproduced, modified, adopted, published, translated in any material form in whole or in part nor disclosed to any
third party without the prior written permission of Thates Adenia Space. © 2018 Thates Alenia Space

Risk Evaluation: ESA MASTER 2009 Environment

Sevaluation of the risk of losing satellites of constellation caused by impact with untrackable and trackable debris

Untracked debris:

Risk of losing the satellites caused by an impact with untrackable debris (diameter <10cm):

- failure of internal items
- failure of external items

Tracked debris:

• Risk of losing the satellites caused by an impact above the **catastrophic threshold (40 J/g**)

Debris environment vs Altitude (ESA MASTER 2009)

[Collision/sat/year]	MEGA- 1000	MEGA- 200	TAS-3200 (780km)	TAS-100
Non-catastrophic (operational)	7.94E-04	3.18E-03	2.96E-03	2,4E-03
Catastrophic – Operational	3.57E-06	1.35E-05	5.42E-05	5.39E-06
Catastrophic - Deorbiting	3.36E-06	3.48E-05	9.46E-06	N/A
whole or in part nor disclosed to any ss Alenia Space	ThalesAlenia			

THALES ALENIA SPACE INTERNAL

ssion of Thales Alenia Space @ 2018 That

third party without the prior written p

Evaluation of Collisions

Non-catastrophic (first set)

Such number can be mitigated by providing adequate MMOD protection and physical configuration

Note: Using 2009 MMOD Environment → Very optimistic

ESTEC Industrial

Probability of catastrophic collision between 2 satellites among the constellation not included

THALES ALENIA SPACE INTERNA

Catastrophic collisions

– They depend on the amount of defunct or decaying satellites \rightarrow influenced by ADR and time for decay

TAS3200 - amount of defunct satellites on operational orbit

Mission Overview

- Mission analysis of the 4 constellation cases
- Launcher selection
- Removers selection

ESTEC Industriall days 19/06/2018

PROPRIETARY INFORMATION ed. adapted, published, translated in any material for

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space

ADR Space and Launch Segment Strategies and Options

Space Segment configurations & number of services

	Chemical One-shot	Chemical Multi mission	Electrical Multi	-mission	Electric	al with DOK	
Specific Characteristics	Net or simplified capture system	Robotic Arm	Robotic A	rm	Rob DOK i (highe	ootic Arm Installation er complexity)	
<u>Number of services,</u> Soyuz	EP Deorbit without DOK	EP Deorbit wi	th DOK	EP Gra	veyard	CP De	orbit
Mega 1000	25	17		15		6	
Mega 200	N/A (1)	(Controlled re-entry with DOK) 9		1	13 (Control		re-entry) 1
TAS3200	(uncontrolled) 35	22		N/A (11)		(uncontrolled) 14	
TAS 100	N/A (1)	(Controlled re-entry with DOK) 9		1	.6	(Controlled)	re-entry) 1

SLaunch strategy options:

- Trade-off Mitigation solution

ADR Mega 1000 Operational concept ADR Trade-off

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space

THALES ALENIA SPACE INTERNAL

MEGA1000: Collision Risk Mitigation Effects

MEGA1000: Evaluation with the 2009 MMOD environment

ESTEC Industrial

Preliminary calculations show that one catastrophic collision could be prevented (with ESA MASTER 2009 env.)

PROPRIETARY INFORMATION

THALES ALENIA SPACE INTERNA

scument is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space

ADR MEGA 1000

Overall Architecture

Wet Mass under 200 kg

Compatible with rest of constellation

SVM	
Propulsion	Electric - ARDÉ 8.2I – 2 * 13mN – 39mN
Architecture	Derived from OneWeb
Power	2 * SA wing
Avionics	SMU with LEON2/3 FT Processor
	Ka-Band
Payload	
Capture	2 Net Capture Systems
RDV sensors	2 * 2D camera

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space
THALES ALENIA SPACE INTERNAL

ADR TAS 3200 Operational concept

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space

23

Collision Risk Mitigation Effects for TAS3200

No ADR

Effects for the space environment:

- ~10% more satellites decaying at lower orbit
- **Drastic reduction of long-term** pollution

Effects for the constellation:

- Additional ADR system
- Limited number of failed satellites close to operational orbit (reduction of risk of constellation loss and of CAM needs)

Effect on catastrophic collisions (with 2009 MMOD environment)

From > 10 collisions to ~0,3 collisions in 50 years (with ESA MASTER 2009 env.)

PROPRIETARY INFORMATIO

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space
THALES ALENIA SPACE INTERNAL

ESTEC Industriall days 19/06/2018

ADR TAS 3200 Trade-off

Soyuz Launch

Second Se

Sensitivity analysis supports selection of: -thrusters -> QT6 - Reliability -> 0.95 - re-entry -> non-controlled

- Accomodation -> stack

THALES ALENIA SPACE INTERNA

on of Thales Alenia Space @ 2018 Thales Alenia Space

ADR TAS 3200

Overall Architecture

SVM	
Propulsion	Hybrid
	Electric – MT-Aerospace L-XTA 300I - 2 * QT6 thruster
	Chemical – MT Aerospace PTD-222I – 16 * 1N
Architecture	Derived from SpaceTug
Power	2 * SA wing
Avionics	SMU with LEON2/3 FT Processor - ICU - PCDU
ттс	X-Band
Payload	
Capture	6 degree of freedom Robotic Arm
RDV sensors	2 * NAC – 2 * WAC – Illuminator

PROPRIETARY INFORMATION
This document is not to be reproduced, modified, adopted, published, transisted in any malerial form in whole ar in part nor disclosed to any third party without the prior written permission of Thats kalenia Space. © 2018 Thates Alenia Space THALES ALENIA SPACE INTERNAL

Conclusion

PROPRIETARY INFORMATION
This document is not to be reproduced, modified, adopted, published, transisted in any malerial form in whole ar in part nor disclosed to any third party without the prior written permission of Thats kalenia Space. © 2018 Thates Alenia Space

29

Conclusion

For the 4 cases of mega-constellations considered in this study, the ADR solutions which give the best positive impact vs the initial baseline are :

- SADR one shot based on constellation platform for MEGA 1000
- SADR EP multi-mission with Soyuz for TAS 3200
- SADR impacts the operators business plan up to 30%
 - SFor very large constellation, it is mandatory
 - *At one step, the revenu will stop because of catastrophic collision
- Constellation reliability increase is a favorable trend
- Analogies can be found with on-ground situation for Electrical and Electronic Equipment
 - Subjected to individual handling and management
 - Segulatory requirements exist for Waste EEE
 - For those requiring individual operations, end-of-life logistic cost is in the range from 20 to 30%.

PROPRIETARY INFORMATIC

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2018 Thales Alenia Space

Recommendations

Current regulations are not relevant with the emergence of mega-constellations

- Sustainable low earth orbit cannot be maintained with the 25 years decay orbit rule
- Recommendation to change Standards and Policies to prevent orbits becoming overpopulated with debris and to drive the constellation operators to use space responsibly and sustainably
- Solutions have to be considered at constellation level

Use of ADR for EOL constellation management

- Solar in the second sec
- Solar second to keep long-term business without endangering space activities
- Needs Operators/Industry to anticipate and « prepare » satellite
- Second states ADR technology ready with sufficient TRL

is document is not to be reproduced, modified, adapted, published, transisted in any material form in whole or in part nor disclosed to a third party without the prior written permission of Thales Aleria Space. ©2018 Thales Aleria Space

PROPRIETARY INFORMATION
This document is not to be reproduced, modified, adopted, published, translated in any attrained form in whole or in part nor disclosed to any third party without the prior written permission of thates Alenia Space. © 2018 Thates Alenia Space

ESTEC Industriall days
19/06/2018