Batteries explosive properties characterization for LEO Satellites
Batteries are one of basic components in satellite

Current Lithium–Ion cells have replaced nickel–metal hydride cells

They are more powerful, radiation resistant

They have less performance drop allowing them for longer operational life.
Batteries which are subjected to elevated temperature might go into thermal runaway where the cell starts to rapidly get fire and rupture.

This scenario is catastrophic. Every single debris even small having big velocity might cause permanent damage to other spacecraft.
Solution

Idea is to design and develop protective chamber/clothing for batteries which will prevent negative results of thermal runaway.
Approach

- Short term goal: Establish TNT equivalent of Thermal Runaway

- Long Term goal: based on result propose type of protective chamber
Test plan

- In order to find TNT equivalent first test will be done in inert atmosphere.

- Knowing it final test will be performer in vacuum with witness plate to for having reference
Test setup

All test will be performed in a detonation chamber with a gas neutralization system.
Test setup

However test setup will need to be modified in following:

- Heated table
- Pressure sensor
- Witness hole for camera
Test scenario

1. Overcharging cells
2. Placing them inside detonation chamber on heating plate
3. Heating rate 35°C/hours
4. Heat for 5 hours or until thermal runaway occur
Test subjects

Tested will be 4 cell types from which best and worst will be selected for further investigation.

Tested variants will be

- 1 cell
- 8 cell
- 88 cell
- 88 cell in vacuum
Future development

Having TNT equivalent batteries thermal runaway company will propose contamination unit for LEO satellites up 100kg.

Which will be:

- Lightweight
- Cheap
- Reliable
Contact details

Bartosz Jakusz
President
+48 572 284 588
bartosz.jakusz@jakusz-spacetech.com

Jakusz SpaceTech Sp. z o.o.
Poland, Szymbark, 83-315
Dluga 41 Street
Thank You for Your attention