

Assessing the impact of Space Debris on the orbital resource in LCA

Clean Space Industrial Days 2018 ESTEC, Noordwijk - October, 23rd

Thibaut Maury^{1,2}, Camilla Colombo³, Philippe Loubet¹ Mirko Trisolini³, Aurélie Gallice²

& Guido Sonnemann¹

¹CyVi group – ISM, Université de Bordeaux, ²ArianeGroup – Design for Environment, ³Politecnico di Milano – Aerospace department

SUMMARY

- 1 CONTEXT
- **2** SCOPE AND OBJECTIVES
- **3 MATERIALS AND METHODS**

- **4** RESULTS
- 5 THEORETICAL CASE STUDY SENTINEL-1A
- 6 DISCUSSIONS & OUTLOOK

01

WHY USING LCA FOR SPACE ACTIVITIES?

GLOBAL DRIVERS LEADING TO ENVIRONMENTAL DETERIORATION

IPAT equation – (Holdren & Ehrlich, 1974)

Impact on the environment

Ex. kg CO₂eq.

Population

number of inhabitants

Affluence

Goods & services / inhabitants

Environmental footprint

Technology

OVERVIEW OF POPULATION & AFFLUENCE FACTORS (I=PAT)

Socio-economic trends

All the indicators of affluence have increased at higher rates than the world population growth...

ENVIRONMENTAL DETERIORATION (I=PAT)

Earth system trends (Environmental stressors)

...Orbital Environment trend

Debris → stressors of the orbital environment

Non-functional objects grow faster than

functional objects

6

BEYOND PLANETARY BOUNDARIES?

Green: safe operative space for Humankind

Red: scientific observations since 2009

Role of the Life Cycle Assessment (LCA) methodology:

■ measure and minimise the environmental footprint (T) of space activities to stay within the planetary boundaries

02 SCOPE AND OBJECTIVES

LIFE CYCLE OF SPACE MISSIONS

OBJECTIVES OF THE WORK

Make the link between eco-design and Space Debris *via* LCA methodology

- Development of Characterization Factors (CF) assessing potential impacts of space mission in orbits
- Application of the CF on 3 post-mission disposal scenarios in LEO to study potential trade-offs with different dwelling time
 - No management of the End-Of-Life
 - Delayed Re-entry (< 25 yrs)
 - Direct Reentry (< 1 yr)
- Overview of the potential burden shifting

03 MATERIALS & METHODS

IMPACT PATHWAY – CAUSE-EFFECT CHAIN

Endpoint Accounting for Midpoint assessment orbital use assessment Scope of the presentation 'Outside-In' 'Inside-Out' Potential contribution to the stressor Potential exposure to the stressor Potential loss of **Exposure to space** Orbital occupation Severity of break-up value for the society debris [m².yr] [location and lifetime of [# of debris crossing the [\$] the cloud of debris] occupied area] Withdrawn orbital Socio-economic asset damages

Orbits = Resource¹

Environmental stressor = debris

INVENTORY

Orbital occupation

[m².yr]

Withdrawn orbital asset

 $[m^2]$ [yr]

Altitude

Average cross sectional area

CHARACTERISATION FACTORS

'Outside-In' Potential exposure to the stressor

Exposure to space debris

[# of debris crossing the occupied area]

$Impact_{exposure} = Inventory \cdot CF$

- Characterisation Factors (CF): average flux of debris crossing the target orbits
- Each orbit presents a different state which allows to classify and differentiate them (existing background impact not caused by the modeled product system).

$$Impact = A \cdot \sum_{i=Orbit} t_i \cdot \overline{\Phi_i}$$
 $[\#_{debris}]$ $[m^2]$ $[yr]$ $[\#_{debris} \cdot m^{-2} \cdot yr^{-1}]$

Calculated impact: avg. number of debris crossing a shape A during the dwelling time of the spacecraft into an orbit i

CHARACTERISATION FACTORS (Φ_i)

MASTER-2009 Model – Business as usual

- Debris population >1cm
- Time interval [2018-2035] (35yrs)
- Circular orbits (e=0,001)
- Fictive spherical target of 1m² (angle of collision 90° isentropic flux)
- All the LEO region is characterised: Δ 50km & Δ 2° inclination (3330 runs)

04 RESULTS

CHARACTERISATION FACTORS: FLUX OF DEBRIS INTO ORBITS

05 CASE STUDY SENTINEL 1-A

SENTINEL 1-A

SENTINEL 1-A

Results of the case study

■ End-of-Life

Mission

SENTINEL 1-A Environmental profile

Hydrazine burned in space is out of the scope

Exposure to space debris (avg # of debris crossing the surface)

Reduction of the Impact of the embedded propellant (Global Warming, Tox...)

... But Hydrazine classified as SVHC by REACH regulation

> Need to redesign the EoL stage with a better environmental profile (e.g. Passive Deorbiting?)

21

06
DISCUSSIONS AND OUTLOOK

SCIENTIFIC ROBUSTNESS

- The indicator is fully compliant with the LCA Framework (ISO 14040/44)
- The numerical approach proposed here is closed to (semi)-analytical approaches already published and discussed, which both integrate the severity:
 - **Anselmo, L., Pardini, C., 2015**. Compliance of the Italian satellites [...] and ranking of their long-term criticality for the environment. Acta Astronaut. 114, 93–100. doi:10.1016/j.actaastro.2015.04.024
 - Letizia, F., Colombo, C., Lewis, H.G., Krag, H., 2018. Development of a debris index.
- Need to develop the Characterisation Factors for the 'Inside-out approach':

Distance-to-Target normalisation

$$Contribution = rac{Potential\ debris\ emitted\ by\ the\ mission}{Overall\ space\ capacity}$$

TAKE-HOME MESSAGE

- A dedicated set of characterisation factors to describe the orbital environment in the LEO region has been calculated
- The exposure to the flux of debris is characterized for several Post-Mission Disposal scenarios
- This indicator can be used to assess the on-orbit stages of the Launchers Ariane 5 / Ariane 6
- However, severity of the collision shall be included in a further step, as already proposed by several studies
- Towards a complete assessment of the trade-offs occurring between the Earth & the orbital environment...

Thanks for your attention

06 BACK-UP

IMPACT PATHWAY – CAUSAL CHAIN

Environmental stressor = debris

Stressor = Orbital resource depleted by S/C

 Maury T, Loubet P, Ouziel J, Saint-Amand M, Dariol L, Sonnemann G. Towards the integration of orbital space use in Life Cycle Impact Assessment. Sci Total Environ. 2017;595:642-650. doi:10.1016/j.scitotenv.2017.04.008.

CHARACTERISATION FACTORS (Φ_i)

Environment Reference Model

Meteoroid and Space Debris Terrestrial

MASTER-2009 Model - Business as usual

Orbital environment

All sources excepted Multi Layer Insulation and Cloud

Debris Population > 1cm

Interval Epoch [2018;2035] (35yrs)

Flux averaged w.r.t RAAN variation at given altitude, inclination & eccentricity

Target velocity

Circular orbit: e=0,001

Fictive spherical target (1m²)

Angle of collision $90^{\circ} \rightarrow$ **isentropic flux**

$$\Delta v_{col}^2 = v_T^2 + v_F^2 - \frac{2v_T v_F \cos\alpha}{2v_T v_F \cos\alpha}$$

D. J. Kessler, "Derivation of the collision probability between orbiting objects: the lifetimes of Jupiter's outer moons," Icarus, Vol. 48, Oct. 1981, pp. 39-48, 10.1016/0019-1035(81)90151-2.

$\Phi_i = Density \cdot \Delta v_{col}$

[#.m⁻².yr⁻¹] [#.m⁻³]

 $[m.yr^{-1}]$

• All the LEO region is characterised: Δ 50km & Δ 2° inclination (3330 runs)

