

Demisability analysis of Solar Array Drive Mechanism

P. Kärräng

- One way of reducing the on-ground casualty risk is by limiting the number of fragments surviving until ground.
- The fragments which survive a re-entry are often from recurring spacecraft components.
 - Propellant tanks, reaction wheels, solar array drive mechanisms, magnetic torquers , balance masses and optical payloads
- Within ESA's "High Fidelity Re-Entry Simulations on Critical Spacecraft Platform Equipment" project:
 - Model and perform analysis of SADMs demise process during atmospheric re-entry
 - Assess the impact of D4D modifications on demisability

Previous SADMs used in SCARAB

Demisability analysis of SADM 24th of October 2018, Clean Space Industrial Days

Baseline model of component

SCARAB model

CleanSat reference trajectory

Assessment of baseline model

Real-time Animation

[flight direction to the right; view from zenith to nadir]

Temperature [K]

CritSPE, ESA Contract No. 4000121149/17/NL/GLC/as

Assessment of baseline model

Assessment of baseline model

Together with manufacturer feasible D4D modifications were identified

Open SADM

Removed parts of the main housing assembly, the idea is to expose the SADM interior to the flow earlier.

Open SADM w/ aluminum actuator

*The wall thickness of the modified sub-components has<u>NOT</u> been changed

Keeping the open SADM design and in addition changing some Actuator components material to aluminum (from titanium) thereby reducing the heat required for complete demise (Q_{demise}). Actuator components which were changed:

- Actuator housing
- Potentiometer shaft
- Potentiometer housing

Evaluation of design modifications

- Baseline model **demise above if released above 87 km**
- Critical sub-components surviving have been identified:
 - Actuator bearing, Potentiometer shaft, Harmonic Drive, Main shaft, Solar array interface and Front bearing
- D4D modification (1): Open SADM
 - Demise for release altitudes above 87 km
 - Tendency to generate more fragments for release altitudes above 67 km. (Larger casualty area on average)
 - Similar "most probable" Casualty Area distribution to the baseline model.
- D4D modification (2): Open SADM w/ Aluminium Actuator
 - Tendency to generate more fragments for release altitudes below 69 km.
 - Minimum demisable altitude around 78 km.

Thank you for listening!

<u>Contact:</u> Patrik Kärräng p.kaerraeng@htg-gmbh.com

Typical fragmentation altitudes during re-entry simulation with SCARAB

Extended work

SADM - Initial release conditions:

SADM release altitude

SADM release temperature