

Current status of Pre-Qualification of Aluminium-Free Solid Propellant

Pawel Nowakowski, Adam Okninski, Anna Kasztankiewicz, Blazej Marciniak, Michal Pakosz, Tomasz Noga, Ewa Majewska, Damian Rysak, Piotr Wolanski

Marek Lipinski, Aleksandra Lenart

ŝ Rafal Bogusz

Andrzej Matlok, Paulina Kozioł, Grzegorz Musial

esa

2

Solid propulsion for deorbitation

- Simple construction
 - Low dry mass
 - Compact size
 - High reliability

- Direct deorbitation capabilities
- Wide range of thrust levels and profiles possible
- Relatively high performance
- No temptation to expand mission duration
- Good storability

Mission definition

- Flexibility
- Basic configuration
 - Satellite mass 1 500 kg
 - Initial orbit SSO
 - Final orbit 800 x 80 km

System	
Number of motors / fried simultaneously	4 / 2
Maximum acceleration	0.04 g
Total required ΔV	200 m/s
Total required propellant mass	116 kg
Motor	
Maximum thrust	250 N
Minimum propellant mass	29 kg
Minimum total impulse	78.5 kNs
Nozzle expansion ratio	220

	Challenges		Solutions		Implementations
•	High total impulse	•	State of the art propellant High Isp	•	AP/HTPB system Optimized oxidizer-fuel ratio
•	Limited thrust (long burn time)	•	Low burn rate	• • •	End-burning grain Low chamber pressure Burn rate suppressant Multimodal AP
•	Solid particles generation	•	No metalized compounds	•	Aluminium-free propellant
•	Storability	•	Storability analysis and testing	•	Vacuum, accelerated aging, radiation testing

Propellant composition

Propellant composition

Final composition

- Ammonium Perchlorate (bimodal)
- HTPB system (binder, curing agent, plasicizer)

• Oxamide

Basic properties				
Density	1.71 g/cm ³			
Burn rate (@ 10 bar)	2.85 mm/s			
Theoretical I _{sp} (vacuum, 92% efficiency)	276.0 s			
Demonstrated I _{sp} (static test, sea-level nozzle)	174.3 s			
c* efficiency (static test)	89.9%			

Propellant testing

Safety assessment

- Standardized test set: internal ignition, impact sensitivity, friction sensitivity, thermal stability, small-scale burning, decomposition temperature
- Official ADR classification 1.3C

Vacuum

 No significant change in mass and properties observed

Propellant testing

- Ageing
 - Accelerated aging up to 10 years storage equivalent
 - Marginal properties change but significant sensitivity drop

- Radiation
 - Total dose 10 kGy (1 megarad)
 - No impact on burn rate and only minimum on strength

TVC outline

- Outside jet vanes configuration
- Subsystem elements
 - Rotary actuator
 - Planetary gearbox
 - Deflector flaps
 - Controller
 - Power supply
- Further mass improvement required

System-level integration

- Cluster configuration
- Integration with spacecraft
- Interfaces
- Thermal control and AOCS
- Considered mounting solutions:
 - Inside the satellite, to the side wall
 - Inside the satellite, to the bottom wall
 - Cluster mounted to the launch vehicle adapter
 - Mixed approach is also possible

Development roadmap

Conclusions

- Using solid rocket propulsion is advantageous for deorbitation
- Development of a dedicated propellant composition was required to meet the requirements
- Trade-off between specific impulse and burn rate was undertaken
- Propellant pre-qualifying tests are in progress
- Preliminary SRM design gives outlook for future work

Thank you for your attention

Pawel Nowakowski pawel.nowakowski@ilot.edu.pl

Center of Space Technologies, Institute of Aviation