

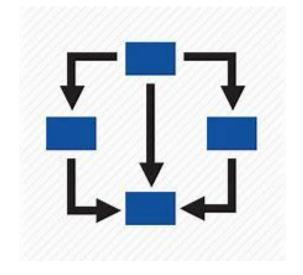
GREENSAT: ECODESIGN OF THE PROBA-V MISSION

Clean Space Industry Days - 23/10/2018

An Vercalsteren, Katrien Boonen, Theo Geerken (VITO) Benoît Remy, Quinten Legasse (QinetiQ Space)

and the second

Introduction and approach


Life Cycle Assessment of PROBA-V

Selection of ecodesign options

Next steps

INTRODUCTION AND APPROACH

GREENSAT PROJECT

Focus:

- from assessment to reduction of environmental impact
- through redesign of an existing satellite mission

INTRODUCTION AND APPROACH

understand how the mission specifications should be (re-) formulated

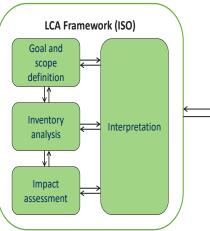
Overall objectives:

- to redesign a space mission
 - based on ecodesign principles
 - reducing at least 3 environmental impact categories by 50%, without an increase to others
- to assess if space sector is ready to evolve into next step redesign of space mission aiming to reduce environmental impact

GREENSAT PROJECT

Specific objectives:

- Identify relevant design improvement options, leading to at least a 50% environmental impact reduction on at least three impacts
- Use and test Space system LCA-guidelines and ESA LCI/LCA database
- Identify potential benefits and difficulties of performing and implementing ecodesign in European space sector
- Communicate on results (a.o. through infographics)


Four work packages:

- <u>WP1</u>: Develop the LCA model of the space mission study case and identify hot spots
- <u>WP2</u>: Identification of ecodesign options brainstorm and tradeoff
- <u>WP3</u>: Ecodesign preliminary concept development and LCA
- WP4: Quantitative comparison of ecodesign options

22/10/2018

🧡 vito

General standards: ISO 14040/44 ILCD handbook PEF Guide Direct applications: • Product

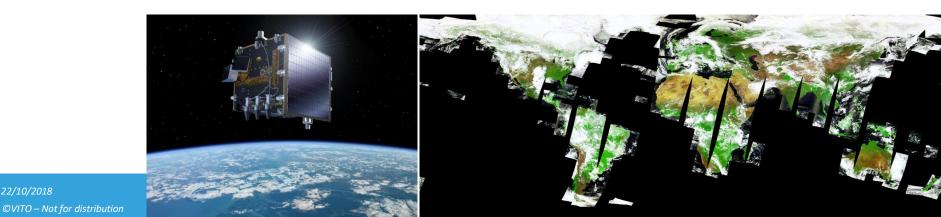
•

development & improvement

Strategic planning

Public policy makingMarketingOther

Carbon footprint standards: ISO 14067 PAS 2050 GHG Protocol Product Standard


LCA OF PROBA-V

SUBJECT: PROBA-V

- Mission objective Gap filler mission for SPOT-Vegetation and Sentinel-3
- Project duration: 3,5 years
 - Start of Phase B1: January 2009
 - Launch: May 2013 on-board Vega VV02 from Kourou

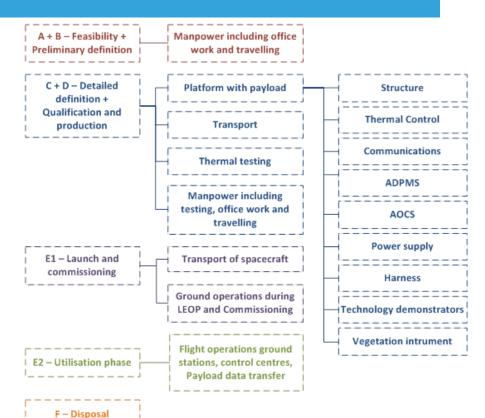
GOAL AND SCOPE

- GOAL:
 - to identify environmental hot spots of the PROBA-V mission
 - \rightarrow which is an important starting point to look for ecodesign options
 - to quantify the environmental impact of the PROBA-V mission, to understand the impacts and the sources
 - → which is a **baseline to benchmark** the environmental impact of the ecodesigned Greensat mission and which allows to assess the environmental impact reduction

SCOPE:

• Payload:

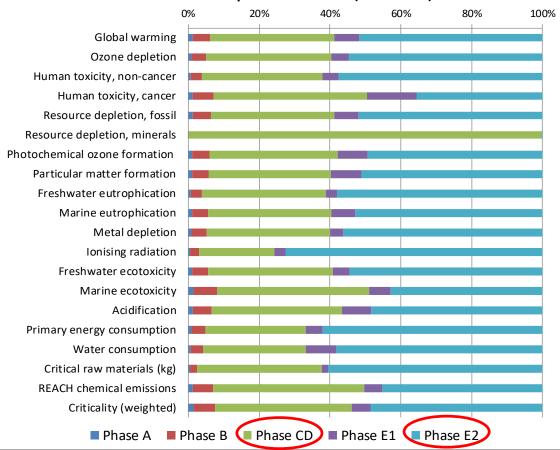
- Vegetation Instrument (VGT-P)
- 5 technology demonstrators
- Ground segment:
 - mission control centre (MCC) at ground station in Redu, Belgium
 - additional ground stations such as Kiruna, Inuvik, and Fairbanks
 - user segment operated by VITO in Mol, Belgium
- Functional unit: Conform space system LCA guidelines


"one space mission in fulfilment of the mission's requirements"

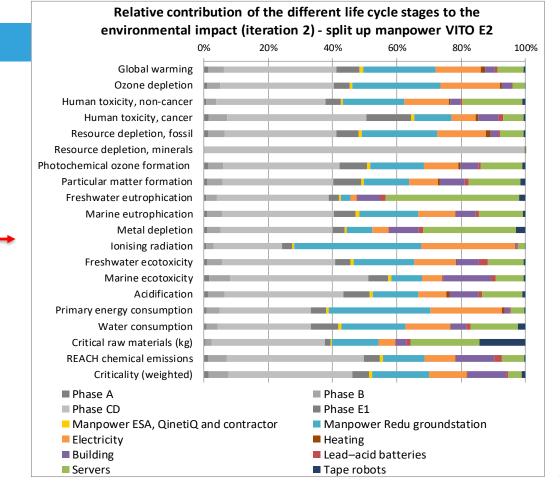
SYSTEM BOUNDARIES

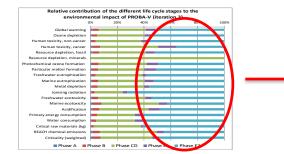
- ✓ Space segment:
 - PROBA-V platform with Vegetation instrument and technology demonstration payloads
- ✓ Launch segment:
 - Placing the PROBA-V satellite into the selected orbit
 - Launch is excluded
- ✓ Ground segment:
 - Controlling and monitoring the satellite
 - Archiving the Vegetation instrument data at Level 0
 - Including the user segment for processing the forwarded Level 0 data up to Level 3

22/10/2018


©VITO – Not for distribution

LCA OF PROBA-V


Relative contribution of the different life cycle stages to the environmental impact of PROBA-V (iteration 2)


IDENTIFICATION OF HOTSPOTS

IDENTIFICATION OF HOTSPOTS



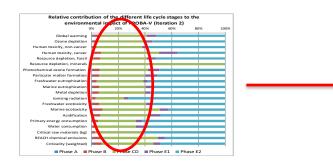
22/10/2018 ©VITO – Not for distribution

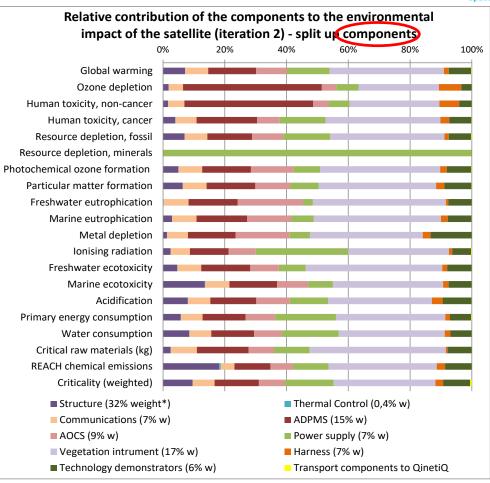
vito


LCA OF PROBA-V

IDENTIFICATION OF HOTSPOTS

/Ito

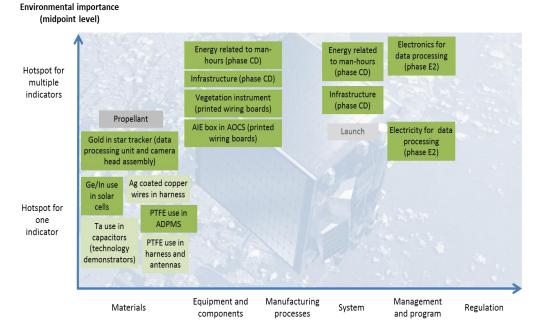




IDENTIFICATION OF HOTSPOTS

Breakdown of phase CD satellite materials (all models included) into the different components

*weight percentage based on total mass including test models



IDENTIFIED HOTSPOTS

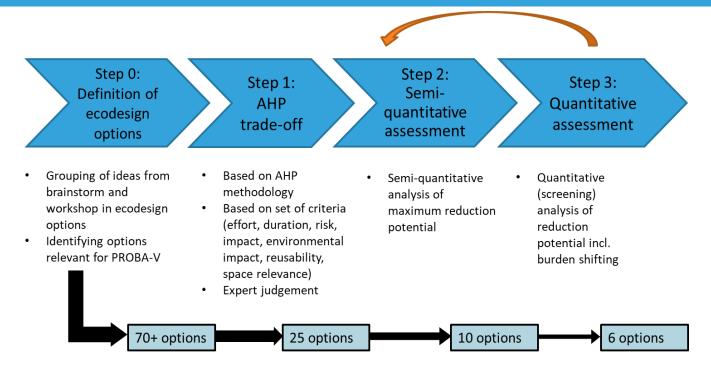
Environmental hot spots for the PROBA-V are identified for **different levels**:

- Materials
- Equipment and components
- Manufacturing processes
- System
- Management and programmatic issues
- Regulation

Impact category	Phase A	Phase B	Manp. QinetiQ - CD			ADPMS	AOCS		Veget. instr.	Other comp. ²	Transp. comp., packag.	Testing	Phase E1	Manp. ESA,RSS, QinetiQ		Heating (VITO)	Building (VITO)	Batter. (VITO)	Servers	Tape robots (VITO)
Global warming					hoating	HCFC-22.						σ			el. natura gas, coal	al	energy for materials		energy produc-	
Ozone depletion					heating	CFC-12 em. PTFE						n and			nuclear (uranium product.		cable waste treatment		tion processes	
Human toxicity, non- cancer						CFC-10 em. PTFE wires			CFC-10 em. PTFE			nitrogen			el. waste incinerat.		copper scrap treatment		dipropyler glycol monomet ether for P	hyl
Human toxicity, cancer			ure		formalde- missions)							of	trave		el. wood and wast	ie	formalde- hyde em. clay bricks		formaldeh em. moun	
Resource depletion, fossil			Inct	+	heating				Б			tion /	e)		electricit fossil fue	ſ			fossil fuel productior processes	•
Resource depletion, minerals			infrast					Ge, In in solar cells	oduction			produ <mark>ction</mark> facility	infrastructur	se					processes	
Photochemical ozone formation			ion of						PCB pn			testing: e testing	f infras	electricity u	electr. from		em. copper extraction (NOx)	-	PCB: em. gold extrac (NOx)	ct.
Particulate matter formation			production of			gold PCB	gold star					the <mark>rmal te</mark> lite to the	oduction of	- elect	coal, waste, wood		emissions		em. fossil energy (PM2.5)	
Freshwater eutrophication			and p			(sulfidic	tracker and PCB		gold (sulfidic tailings)	gold PCB (sulfidic tailings)		the lite	pduc	tion		T	copper pro-		gold PCB (sulfidic	
Marine eutrophication			rk ar							connigs)		, for the satellite	ď	dstation	nuclear (uranium mining)	1	duction		tailings)	
Metal depletion			e work						gold			infrastructure, nsport of the s	work	ground	el. blast furnace g	as	copper			Cr in steel casing
Ionising radiation			for office									truct t of t	e	LS n	nuclear power				PCB (sov-	
Freshwater ecotoxicity			or o						methyl acrylate em.			frast	r offi	Redu	bio-base power	d	Cu scrap treatment	electrode product.	based phe	n-
Marine ecotoxicity			use f						Cill.			ıg, infrast transport	e for		emissions el. coal	s	Cu (sulfidic tailings)		gold PCB (sulfidic	
Acidification			city									testing, tra	y use		el. coal and wast	ie	emissions Cu product		energy	
Primary energy consumption			Electric	4	heating							use	Electricity		nuclear (uranium	1)			produc- tion processes	
Water consumption												ectricity			hydro- power		hydro- power		hydro- power	
Critical raw materials (kg)						Tungsten in PCB			tungsten	tungsten in PCB		lectr			el. waste incinerat		Cr in steel		Cr in steel casing	Cr in steel casing
REACH chemical emissions									gold (arsenic em. tail.	PEI (1,2- dichloroet					Cu cables (em. tail.)		Cu (arsenic em. tail.)		gold (arsenic em. tail.)	
Criticality (weighted)									crin. tail.	hane em.)					el. blast furnace g	as	clay, gravel in bricks		Fe, Cr in steel casin	g

Color scales: dark red: > 50% of the impact in a specific category is due to the item, dark orange: 25 - 50%, light orange: 10 - 25%, yellow: 2,5 to 10%. Boxes with wide, colored borders indicate common causes of environmental impact over different impact categories and/or contributors.

SELECTION OF ECODESIGN OPTIONS


IDENTIFICATION OF ECODESIGN OPTIONS

- Starting from environmental hotspots
- Two-step approach:
 - *External workshop*, with wider group of stakeholders
 - Internal brainstorm, with experts specifically involved in the PROBA-V life cycle stages
- Selection process applied to long list of ecodesign options generated for space missions in general and PROBA-V in particular

SELECTION OF ECODESIGN OPTIONS

22/10/2018

STEP 1: AHP TRADE OFF

- To select the 25 most promising options out of the long list
- AHP trade-off based on the following criteria:
 - Solution implementation effort (cost, manhours, means)
 - Duration (time to market/launch)
 - Risk (feasibility, applicability, performance, availability of alternatives, flexibility)
 - Impact (operational cost)
 - Overall environmental impact
 - Reusability of the solution
 - Additional to identify the options that are 'space specific.

Opt	tion	Level	А	В	с	D	E	F	Score (%)	Spa spec (ES
1	Not using PTFE but e.g. PE instead	1	5	5	5	3	5	4	92,1	x
2	Promote teleworking, use of teleconferencing	4	5	5	4,5	3	4	5	88,0	
3	More efficient on-ground data management	2	4	3	5	4	5	4	86,9	x
4	Use of long-heritage components	4	5	5	4	2	5	4	86,4	x
5	Use recycled Germanium	3	4	4	4	3	5	5	86,3	x
6	More efforts in early phases	5	4	4	4	3	5	5	86,3	
7	Green propellants	1	4	4	4	4	5	4	85,6	x
8	Reduce copper surface to be Ag coated	1	5	4	4	5	3	5	83,5	x
9	Flexible design	4	4	4	4	2,75	5	4	82,6	x
10	Renewable energy	4	4	3	4	3	5	4	81,2	
11	Reduce documentation	5	5	4	4	3	4	4	81,2	
12	Improve the efficiency of buildings	4	4	4	5	3	4	4	81,0	
13	System-level testing	4	4,5	5	3,5	3	4	4	79,8	x
14	Use of modular buildings for ground stations	4	4	5	4	3	4	4	79,6	
15	Recurrent platforms	4	4	3	4	3	5	3,5	79,6	х
16	Use of modular components	2	4	3	5	3	4	4	78,9	х
17	Si instead of Ge	1	4	5	5	1	4	4	78,2	х
18	Prolong electronics lifetime	2	3	4	4	3	5	3,5	78,1	х
19	Adopt PMI best practices and focus more on risk management	5	5	4	5	3	3	3,5	77,4	×
20	Laser/plasma surface treatment	3	4	5	5	3	3	4	77,4	x
21	More on-board and on-ground autonomy	4	3	3	4	3,5	5	3,5	77,3	x
22	Reduce components qualification requirements	2	5	3	2	3,5	4	5	76,8	×
23	Optimize electronics	2	4	4	3	4	4	4	76,7	x
24	Reduce number of design iterations	5	5	4	3	2,5	4	4	76,7	х
25	Heat pipes	2	3	4	3,5	3	5	3,5	76,4	х
26	Virtual thermal testing	2	3,5	3	3	3	5	4	76,1	x

STEP 2 AND 3: (SEMI-) QUANTITATIVE ASSESSMENT

- Step 2:
 - To assess potential reduction of each ecodesign option specifically on the satellite's hot spots, which leads to a further selection of 10 options

Step 3:

- To assess additional effort needed to achieve a specific option (e.g. additional testing, software development, different materials, weight increase) is calculated
- Including system level impacts
- Orders of magnitude

FINAL SELECTON OF ECODESIGN OPTIONS

- Following ecodesign options are selected to further elaborate:
 - Using alternatives for PTFE
 - More efficient on-ground data management incl. prolonging life span of on-ground electronics
 - Use recycled Germanium and its production as a by-product of the extraction of other metals for solar panels
 - System-level testing incl. virtual thermal testing methods
 - More on-board versus on-ground autonomy
 - Optimize electronics
- Including different levels and both space specific as well as more generic or groundstation related options

NEXT STEPS

PRELIMINARY CONCEPT DEVELOPMENT


- **1.** Further development and design of selected ecodesign options
 - In close cooperation with external consultants (suppliers, ...)
 - On different levels → evaluation of full consequences
- 2. Iterative LCA on individual option level to guide design process
 - Avoid burden shifting
 - Max. 3 LCA-iterations per ecodesign option
- 3. LCA comparing ecodesign option with baseline on option level
 - Identification of environmental indicators that are significantly reduced

QUANTITATIVE COMPARISON OF ECODESIGN OPTIONS

- 1. LCA of Greensat PROBA-V mission incorporating all ecodesign options
- 2. Compare environmental impact of baseline and redesign on space mission level
 - To identify environmental saving
 - To check feasibility of project objective (50% reduction for 3 environmental impacts)

QUANTITATIVE COMPARISON OF ECODESIGN OPTIONS

- 4. Assessment of cost of environmental saving
 - Monetization method to translate and weight environmental impacts in 1 indicator
- 5. Assessment of cost, performance, risk, schedule and feasibility
- 6. Develop summarizing table with pros and cons of ecodesign options
- 7. Develop roadmap for 3 selected options
- 8. Revisit missions specification

CONTACT DETAILS

• VITO:

- An Vercalsteren (project manager)
 - An.vercalsteren@vito.be
 - +32 14 33 58 55
- Theo Geerken
 - Theo.Geerken@vito.be
 - +32 14 33 59 47
- Katrien Boonen
 - Katrien.Boonen@vito.be
 - +32 14 33 59 53

QinetiQ Space:

- Quinten Legasse
 - quinten.legasse@qinetiq.be
- Benoît Remy
 - <u>benoit.remy@qinetiq.be</u>

