Environmentally Friendly Polyurethane (PU) Materials for Space Applications

Tomas Vlcek, TOSEDA s.r.o. (Czech Republic)
Ugis Cabulis, Latvian State Institute of Wood Chemistry (Latvia)
Arturs Jasjukevic, Ariane Group GmbH (Germany)
Malgorzata Holynska, ESA-ESTEC (The Netherlands)
General target

- Development of novel eco-friendly polyurethane materials avoiding use of toxic non-isocyanate based PU materials for versatile applicability in aerospace industry:
 a/ potting systems (spacecrafts manufacturing),
 b/ conformal coating (spacecrafts manufacturing), and
 c/ thermal insulation foams (launchers manufacturing).

Requirements

- Elimination of toxic isocyanates used in traditional production of PU materials
- Minimization of health and ecological risks
- Sustainability aspect – use of renewable resources such as non-edible vegetable oils
Development of „Green” Polyurethane Materials for Use in Spacecraft and Launcher Applications

ESA Contract No. 4000119685/17/NL/KML
2017 - 2019
Targeted TRL = 3-4

TOSEDA s.r.o. (CZ)
- SME
- Prime-Contractor
- Design, formulation, preparation and testing of HNIPU materials

ArianeGroup GmbH (DE)
- Large Systems Integrator (LSI)
- Sub-Contractor
- Definition of industrial requirements and evaluation of HNIPU materials

Latvian State Institute of Wood Chemistry (LV)
- Non-profit organization
- Sub-Contractor
- Semi scale of HNIPU foams by spraying and testing
TOSEDA s.r.o.

- 2010 - SME (Czech Republic)
- 2012 - Custom design, development and commercialization of polymeric and nanocomposite materials for hi-tech applications
- 2012 - registered at ESA
- 2013 - membership at Czech Space Alliance
- Space projects:
 - Study of the LH2 Protective Layer Performance (2013)
 - Development of Epoxy Based Syntactic Foam Encapsulant: 3rd Call for Outline Proposals under the Czech Industry Incentive Scheme (2013-2016)
 - Design of Inner Wetted Thermal System for LH₂ Metallic Tank: FLPP3 program (2014-2016)
 - Electrically Conductive „Black Primer“: TRP program (2017-2018)
 - Thermal Joint Development for NEOSAT - Phase C: ARTES Neosat Phase C program (2017-2019)
 - Extended Pot Life Resins for Out of Autoclave Processing for Large and Complex Part: GSTP program (2018-2020)
Latvian State Institute of Wood Chemistry

LS IWC mission is the development of knowledge-based, environment friendly low-waste technologies for obtaining competitive materials and products from wood and other plant biomass for sustainable utilisation of natural resources for economic, social and ecological benefits.

- Founded in 1946
- 118 employees;
- 38 Dr.

Cooperation with ArianeGroup (former Airbus DS; Airbus SL; ...) since 2004: development of ETI and IWTI

- Rigid Polyurethane Foams for External Tank Insulation for Launcher Upper Stages (**CRYOFOAMS**), 2015 – 2017
- Light Weight Polyurethane Insulation for the Bulkhead of Ariane Rocket, Produced with Next Generation Blowing Agents and Environmentally Friendly Catalysts (**CRYOFOAMS-LW**) 2018 - 2020

Development of Biobased Cryogenic Insulation Modified with Nanocrystalline cellulose

Clean Space Industrial Days, ESTEC, 23/10/2018
ArianeGroup

- A world leader in access to space, serving institutional and commercial customers and supporting Europe’s strategic independence
- 9000 employees, 11 subsidiaries & main affiliates
- 50/50 joint company between Airbus & Safran
- Main projects:
 - Ariane 5
 - Launch Services
 - Ariane 6
- Development and industrial application of the External Thermal Insulation (ETI) for the application on the Ariane 6 launch vehicle
- In the frame of the “Green” PU project:
 - Providing LSI inputs, as well as support in testing
Approach

Traditional polyurethane synthesis

\[R_1\text{NCO} + HO-R_2 \rightarrow \overset{\text{isocyanate}}{R_1\overset{\text{urethane}}{\text{NCO}}} \overset{\text{alcohol}}{\text{O}} \overset{\text{R_2}}{\text{O}} \text{urethane} \]

Non-isocyanate polyurethane synthesis

\[R_1\text{NH}_2 + \overset{\text{CO}_2}{\text{epoxide}} \rightarrow \overset{\text{amine}}{\text{R}_1\text{NCO}} \overset{\text{cyclocarbonate}}{\text{O}} \overset{\text{O}}{\text{R}_2} \text{urethane} \]

\[\overset{\text{epoxide}}{\text{O}} \overset{\text{CO}_2}{\text{O}} \overset{\text{O}}{\text{R}_2} \text{HNIPU} \]

Clean Space Industrial Days, ESTEC, 23/10/2018
Synthesis of cyclocarbonates

- Pressure: 40 bars (CO₂ inlet)
- Temperature: 110 °C (inside of the reactor)
- Mixing: by magnetic bar
- Raw materials loading: 100 g
- Catalyst: Quaternary ammonium salt
- Co-catalyst: Catechol based hydrogen bond donor
- Reaction time: ca 24 - 48 h

Photo of TOSEDA's laboratory pressure reactor set-up.
HNIPU rigid thermoinsulation foams

Laboratory testing

<table>
<thead>
<tr>
<th></th>
<th>PU CRS 127 reference</th>
<th>HNIPU F 1</th>
<th>HNIPU F 2</th>
<th>HNIPU F 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density [g/cm³]</td>
<td>-</td>
<td>0.05</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Compression strength at 10% deformation [MPa]</td>
<td>> 0.45*</td>
<td>0.16</td>
<td>0.17</td>
<td>0.35</td>
</tr>
<tr>
<td>Thermal conductivity [W/m.K]</td>
<td>< 0.035*</td>
<td>0.033</td>
<td>0.037</td>
<td>0.038</td>
</tr>
</tbody>
</table>

*Benchmark targets
Requirements for components of rigid thermoinsulation foams obtained by spraying equipment

Glascraft VR
Ratio 1 : 2.5 – 2.5 : 1
Viscosity <400 mPas
Temperature <80°C

Graco Reactor 10
Ratio 1 : 1
Viscosity <300 mPas
Temperature <40°C
HNIPU F 1

Laboratory preparation of the HNIPU foam in paper cup

Cut through the HNIPU foam prepared in paper cup

Renewables = 45 %
Non-isocyanates urethane bonds = 42 %

- Best candidate HNIPU foam
- White color
- Fine cell structure
- No shrinkage
- HFC free blowing agent
- Mixing ratio A/B = 1/1

Clean Space Industrial Days, ESTEC, 23/10/2018
HNIPU conformal coatings

Renewables = 59 %
Non-isocyanates urethane bonds = 36 %

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Tg (DSC) [°C]</th>
<th>Surface hardness [Shore A]</th>
<th>Tensile strength (25 °C) [MPa]</th>
<th>Elongation at break (25 °C) [%]</th>
<th>Thermal conductivity (27 °C) [W/m.K]</th>
<th>Surface resistivity [Ω]</th>
<th>Volume resistivity [Ω.m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference C*</td>
<td>1</td>
<td>72</td>
<td>2.8</td>
<td>99</td>
<td>0.251</td>
<td>1.5 x 10⁹</td>
<td>5.7 x 10¹¹</td>
</tr>
<tr>
<td>HNIPU C 1</td>
<td>-30</td>
<td>62</td>
<td>0.4</td>
<td>12</td>
<td>0.252</td>
<td>1.3 x 10¹¹</td>
<td>5.2 x 10⁷</td>
</tr>
<tr>
<td>HNIPU C 2</td>
<td>-6</td>
<td>65</td>
<td>0.6</td>
<td>15</td>
<td>n.a.</td>
<td>1.0 x 10¹¹</td>
<td>1.4 x 10¹¹</td>
</tr>
<tr>
<td>HNIPU C 3</td>
<td>22</td>
<td>86</td>
<td>5.0</td>
<td>166</td>
<td>n.a.</td>
<td>1.4 x 10¹²</td>
<td>1.7 x 10⁹</td>
</tr>
</tbody>
</table>

* Reference system (Solithane S113 + Solithane C113-300; Crompton, US)

Clean Space Industrial Days, ESTEC, 23/10/2018
NIPU potting systems

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Tg (DSC) [°C]</th>
<th>Surface hardness [Shore A]</th>
<th>Tensile strength (25 °C) [MPa]</th>
<th>Elongation at break (25 °C) [%]</th>
<th>Thermal conductivity (27 °C) [W/m.K]</th>
<th>Surface resistivity [Ω]</th>
<th>Volume resistivity [Ω.m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference P*</td>
<td>52</td>
<td>72</td>
<td>37.4</td>
<td>18</td>
<td>0.164</td>
<td>6.1 x 10^{10}</td>
<td>3.2 x 10^{12}</td>
</tr>
<tr>
<td>NIPU P 1</td>
<td>52</td>
<td>80</td>
<td>31.5</td>
<td>4.6</td>
<td>0.242</td>
<td>6.9 x 10^{13}</td>
<td>2.1 x 10^{9}</td>
</tr>
</tbody>
</table>

* Reference system (Solithane S113 + TIPA; Crompton, US)

Renewables = 57 %
Non-isocyanates urethane bonds = 100 %
Conclusions

• Hybrid non-isocyanates polyurethanes as new environmentally friendlier alternative to traditional PU materials
 ➢ Up to 100% replacement of toxic isocyanate hardeners
 ➢ Up to ca 60% renewable raw materials

• HNIPU rigid foam potentially applicable as external thermal insulation of Ariane 6 launcher upper stage tanks for liquid propellants
• HNIPU resins suitable candidates for application in space vehicles electronics such as potting and conformal coating materials
Thank you for attention!