

e.Deorbit and the Space Servicing Vehicle

Clean Space

23/10/2018

ESA UNCLASSIFIED - For Official Use

Active Debris Removal

To remove an ESA-owned heavy debris from 800-1000 km (near polar region).

ESA UNCLASSIFIED - For Official Use Clean Space | 23/10/2018 | Slide 3

ENVISAT Attitude Update

Credits: AIUB 20th of September

Expected Position

 ${\sf ESA\ UNCLASSIFIED\ -\ For\ Official\ Use}$

Credits: AIUB

→ Possibly due to tumbling motion

ESA UNCLASSIFIED - For Official Use

Credits: AIUB

Period of 190s

ESA UNCLASSIFIED - For Official Use

Credits: AIUB

Active Debris Removal - e.Deorbit

→ e.Deorbit Consolidation Phase

A bridge between Phase B1 and Phase B2, with the objective to study the synergies with e.Deorbit and the Space Servicing Vehicle / Space Tug

ESA UNCLASSIFIED - For Official Use

e.Deorbit Consolidation Phase

ESA UNCLASSIFIED - For Official Use

Clean Space - Active Debris Removal and Servicing

2018 Space Servicing Vehicle CDF Study - Complete

2018 Request for Information

Space Servicing Vehicle - CDF Pre-Phase A

Mission Scenario 3 Megaconstellation **ADR**

ESA UNCLASSIFIED - For Official Use

Space Servicing Vehicle – CDF Conclusions

Conclusions:

- 1. Synergies in Technologies
- 2. Different System Designs Required

→ Follow-On Activities

- On-Orbit Antenna Assembly
- Servicing Platforms in GEO

Megaconstellation Phase A

ESA UNCLASSIFIED - For Official Use

RFI → Objectives

This initiative addresses three objectives:

- to perform the removal of ESA satellite(s) as a precursor of in-orbit servicing;
- to demonstrate technologies, functions and operational know-how to perform other in-orbit services; and
- to achieve the above by means of service contract(s) to provide an opportunity to space industry to enter into this new space market.

Mission Statement

Perform the removal from orbit of an ESA-owned satellite(s) in execution of service contract(s) placed by ESA and demonstrate capabilities and technologies for in-orbit servicing

RFI → Mission Requirements

MIS-01	Remove from orbit ESA-owned satellite(s) with a total mass larger
	than 100 kg at least 5 years prior to its/their natural re-entry*

MIS-02	Demonstrate feasibility of critical technologies enabling other in-orbit
	TBD servicing opportunities

MIS-03	Provide a robust business model for in-orbit servicing activities
	beyond the service provided to ESA

MIS-04 Comply to space debris mitigation requirements stated in RD.1

ESA UNCLASSIFIED - For Official Use

^{*} list of satellites published

Continuing ADR / SSV Technologies

3.3 M€ in TRP / GSTP Technology Developments on-going

6-Degree of Freedom Gripper Platform

Credits: Hellenic Technology Robotics

Tether

Multi-Spectral Camera

Credits: Cosine

Combined Control

Credits: GMV

Harpoon Development

Credits: Airbus

Clean Space | 23/10/2018 | Slide 19

ESA UNCLASSIFIED - For Official Use

2018 / 2019 +

Activity Title	Target Prog.	Total Budget	Year	Status
Space Servicing Vehicle Robotics Subsystem - Phase 1 (RENEGADE)	GSTP	€7,000,000	2018	Approved
e.Inspector Phase A	GSTP	€250,000	2019	Planned
Space Servicing Vehicle Robotics Subsystem - Phase 2	GSTP	€5,500,000	2020	Proposed
Space Servicing Vehicle Pre-Development of Algorithms	GSTP	€400,000	2019	Proposed
Space Servicing Vehicle Multispectral Camera	GSTP	€800,000	2019	Proposed
Space Servicing Vehicle Stereo Camera	GSTP	€800,000	2019	Proposed

e.Inspector

→ Mission Objectives

R-MIS-1: Image ENVISAT in its current status

R-MIS-2: Use obtained images for the verification and

validation of a Space Servicing Vehicle GNC sensors

ESA UNCLASSIFIED - For Official Use

Inspection Timeline – EP to ENVISAT

e.Inspector Summary

Subsystems:

- Communications: UHF (housekeeping) and Sband (payload data) (1 antenna, 1 transceiver of each)
- Data-handling: 1 CubeSat computer, 1 FPGA, 1 power board
- Power: 1 PCDU, Battery, 1 Body Mounted 3U SA, 2 SA wings of 3x6U
- Mechanisms: 2 HDRM, 12 Hinges
- AOCS: GPS rcvr, 6 SAS, IMU, 3 MT, 1 Rel Nav Imager, 3 RW, 1 STR
- Thermal Control: 45 Temp sensors, 15 Heaters, BP, MLI, OSR
- Propulsion: 2 FEEP systems

Cubesat Dispenser Type: ISIS - 6U

Proposed as a 250 k€ Phase A in GSTP

ESA UNCLASSIFIED - For Official Use

Design for Removal

Following the failure of a satellite...

- 1 Track the satellite orbit, and characterize the attitude implement retroreflectors, radar corner reflectors
- 2 Launch an ADR satellite & perform the rendezvous and approach implement RF tags, 2D-3D markers
- Stabilise the satellite shortcircuit the magnetorquer
- Capture the satellite integrate a capture interface

Design for Removal – ITT for Mechanical Interface

Design for Removal - Passive Mechanical and Rendezvous Interface for Capture after End-of-Life (PRINCE)

PRINCE shall include the following elements developed to TRL 3:

- Passive interface on the target satellite including the mechanical interface to facilitate capture and the navigation supports (e.g. 2D / 3D markers)
- Mechanical interface on the space servicing vehicle (e.g. the gripper at the end of a robotic arm)

The output: Interface Control Document to be provided to EO

150 k€ Open Competition (ITT Closure - 7 weeks)

ESA UNCLASSIFIED - For Official Use

Scope

Objective:

 Provide technical input for a future discussions on design principles / requirements for safe close proximity operations

Benefits:

- Support industry through technical guidance and identification of potential licensing methods
- Capture of knowledge
- Protection to the orbital environment and other assets
- Enable international engagement

Output:

Technical input for a future design principles document

2019 Industrial Activity ≈ 400 k€

ESA UNCLASSIFIED - For Official Use

Activity Summary

System:

- RFI Q4/18 or Q1/19
- TBC Servicing Provisions for GEO Satellites (ARTES) '19 [600k€]
- TBC On-Orbit Assembly (ARTES) Q4/18 [250 k€]
- TBC Megaconstellation Phase A (ARTES) Q1/19 [350 k€]

Technology:

Robotics for Space Servicing Vehicles: Renegade ITT Closed [7M€] **GNC Space Servicing Vehicles:**

- 4 x activities in GSTP Workplan [10 M€]
- e.Inspector Phase A Proposed [250 k€]

Design for Removal: 1 x mechanical interface/robotic (open) [150 k€]

Close Proximity Operations: Q1/Q2 '19 [400 k€]

ESA UNCLASSIFIED - For Official Use

