

Assessment of Design for Demise Approaches for Reaction Wheels

Date October 24th, 2018

Presented by Dr. Markus Ehinger (RCD) Patrik Kärräng (HTG)

Building trust every day

Agenda

- Program Description
- Modification Options
- Demisability test results
- Simulation results (work ongoing)

Program Overview

- The program of funded by ESA in the frame of a TRP contract.
- The object of this study is to further investigate the break-up processes of a reaction wheel during re-entry, with the ultimate goal of having a fully demisable reaction wheel at the release altitude of 78km.
- The ball bearing unit (BBU) was already identified as a key element (demising late) during the demise process in previous studies.
- Potential design changes are analyzed with regards to the optimization of demisability.
- With the BBU being the key piece of technology in a reaction wheel, any design changes are carefully considered against heritage requirements.

Modification Options

- Baseline wheels (from study:
- RSI 68 with steel rotating mass and RCD ball-bearing unit (BBU)
- RSI 68 (Al) with rotating mass made from Aluminum

Options to improve demisability of BBU

- Modify BBU threaded rings to trigger break-up earlier
- Glued connections to trigger breakup at lower temperature
- Further Ideas

Baseline (RSI 68 Nms - Stainless steel)

- Input conditions extracted along the CleanSat reference trajectory
 - Total of 225 cases in an altitude range between 58 and 98 km
 - 25 attitude variation cases for each main release altitudes (60, 69, 78, 87, 96)
 - 10 attitude variation cases at +- 2 km from the each main release altitude

Baseline (RSI 68 Nms - Stainless steel)

Comparison between Baseline and Al68 (RSI 68 Nms)

Surviving parts from Baseline model

BBU - Release triggers

- Added temperature dependent release triggers inside the BBU to assist in its break-up.
- Triggers added at:
 - Threaded ring (at 900K releasing the shaft)
 - Rotor (at 490 K releasing the rotor rings)

BBU - Release triggers

T =	2367.02 s
Η =	77.996 km
۷ =	7.578 km/s

Real-time Animation

[flight direction to the right; view from zenith to nadir]

"Assessment of Design for Demise Approaches for Reaction Wheels" ESA Contract No. 4000122741

BBU - Release triggers

Т	Ξ	2433.7	71 s
H	=	67.132	2 km
۷	=	6.958	km/s

Slow-Motion Animation

[flight direction to the right; view from zenith to nadir]

"Assessment of Design for Demise Approaches for Reaction Wheels" ESA Contract No. 4000122741

Comparison of most-probable casualty area

Conclusion and Status as per October 2018

Simulation results show:

- RSI 68 (AI) (Aluminum rotating mass with no further modifications)
 - is demisable at and above release height of 87 km in 2/3 of the cases.
- RSI 68 (Steel rotating mass, with minor modifications of BBU)
 - is demisable at and above release height of 87 km

Next steps to further decrease the demise altitude

- Simulatation with smaller, but faster spinning wheel type: RSI 45 (Al)
- Use of thermite to increase the thermal energy within the BBU
- Combination of various modifications

The demise altitude has already been lowered to 87km and more options are available to improve the Demisability even further.

Rockwell Collins Germany Existing Productline

Rockwell Collins Space qualified Aluminum rotating masses:

	(kgcm ²)
Part Nr.	Inertia
73570-001	21,3
73825-001	51,6
52637-001	78,9
72159-001	84,9
71413-001	111,5
68307-001	182,7
69571-001	208,9
71513-001	272,0
70788-001	369,0
72346-001	383,0
72564-001	470,0
71674-001	703,0
73744-001	744,2
73971-001	1062,6

