Clean Space industrial days

23 to 25 October 2018

Technologies For Space Care

Tech4SpaceCare Initiative aiming to develop technological elements to ensure the sustainable use of space and the security of space operations in synergy with CleanSpace ESA activities

Pierre Omaly

Lot of activities have been done in CNES since 2010 in the frame of French Space Operation Act.

Establishment of an initiative that aims to:

- Focusing and centralize all the activities on the field of FSOA done in CNES with the objective to sustain the needs
- Keep watch on the subject
- Federate Technical activities inside CNES and French Space Industry
- Ensure the industrial and ESA point of contact

Maintain the sustainability of space

- Management of debris
- End Of Life
- Re-Entry safety : tools and technologies
- Protection of public health and the environment

Re-entry Safety

Article 44.1 to 44.3 : Quantitative human safety objectives for return of a space object to Earth Article 45 : Uncontrolled re-entry Article 46 : Controled re-rentry

Modeling

- Fragmentation Mecanical stress
- •Benchmark Incertitude
- Methodology
- •Wind tunnel
- Population

Design for Demise

• Joint test at hight temperature Advanced Studies : D4DLeO

Reentry Observation

•Avum rebuilding (GSTP) • Mission definition (GSTP) •Rentry Sat •Advanced Studies : Experimentation for reentry observation demonstrator

Impact on environment (ex. reentry)

Space Sustainability

Article 40.1 to 40.7 :Space debris mitigation

End of Life

•Post Mission Disposal nominal or degraded mode •Reliability vs Probability of PMD •Equipment qualification •Autonomous / Desorbitation •Assisted natural re-entry ADR Compatibility & Maturity Passivation Measures

Mission extension

•Health Monitoring et Machine Learning •EOF decision. Reliability

Protection/Vulnerability

•Hypervelocity impact : debris generation/spacecraft reliability Impact debris generation •MMOD Protection • Pressurized Tanks Battery

- CNES R&T programm
- CNES Advanced studies (PASO)
- CNES FSOA plan
- Innovation cluster actions
- CNES support in CleanSpace activities (GSTP/TRP)
- CNES inkind resources
- Thesis funding

Building Blocks

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Art.40-1 : no generation of debris during the nominal operations												
Equation balistique liée au NIDA	<<											
IHV : Pressurized tanks												
Modélisation des impacts hyper vitesse												
Amélioration du moyen d'essais THIOT Ingénierie												
Evaluation of ballistic limits at high velocities												
Renforcement de panneaux NIDA												
Experimental characterization of the protection afforded by												
MLIs to debris and micro-meteorites												
Cloud model of fragments from a hyper-speed impact												
Impact simulation on metallic tanks with reactive fluid												
Art.40-3 : passivation of energy reserves and deactivation of means												
of energy production at end of mission												
Pasivation GEO												
Microperforator												
initiator with a long life												
Power system passivation												
Battery stress test												

. .

Building blocks	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Art.40-6 : probability of success > 0,85 to perform the disposal maneuvers						ı	1				
Gestion de panne tuyère transitoire de type bulle à partir d'informations											
du SCAO											
Health Monitoring											
System impact of taking into account 0.9 of PMD vs 0.85											
<u>Art.44-1 : casualty risk < 10-4</u>											
DEBRISK											
Aerothermal model for Debrisk reentry											
Wind tunnel											
Aerothermal effect of a hole in a tank during reentry											
Study of the effect of wake on atmospheric reentry											
Oxidation & emissivity of materials at high T °											
Evaluation of margins in DEBRISK models											
Resistance of satellite structures at high temperature											
Destruction of LEO satellite structures											
LOS Compatible Reservoir for Lower Earth Orbit Electric Satellites											
Development of "demisable" tanks made of composite materials											
Hight fidelity computation on spacecraft sub-system											
Mesh improvement and Spacecraft modeling with Pampero											
Improvement of aerodynamic spinning & damping moment during reentry											
Interaction between flow and surface for better modelisation											

Building blocks

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

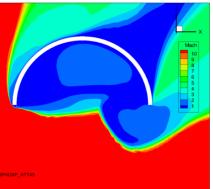
Art.40-4 : to leave the protected area in less than 25 years Space sustainability

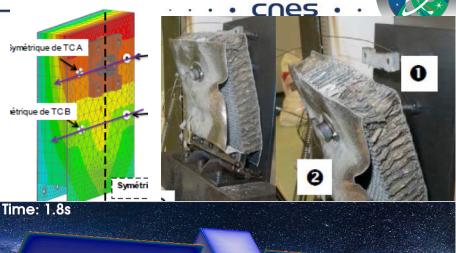
Desorbitation from end-of-life survival mode of satellites in low orbit						
LEO autonomous desorption, in case of loss of ground control						
De-orbiting strategies leading to a controlled re-entry						
Desorbitation of satellites in electric propulsion						
Attitude control for very low-altitude satellites						
Defining an AOCS Mode for PMD in survival mode cont						new
Feasibility of Natural Assisted Reentry						

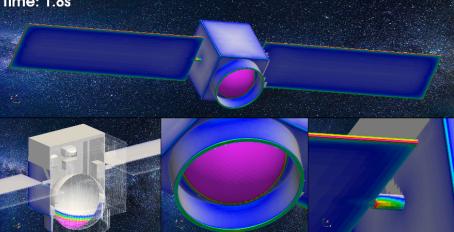
Clean Space industrial days

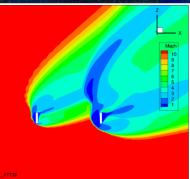
TSC

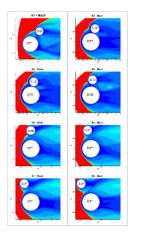
OVERVIEW of the activities conducted in CNES in 2018 in the frame on FSOA



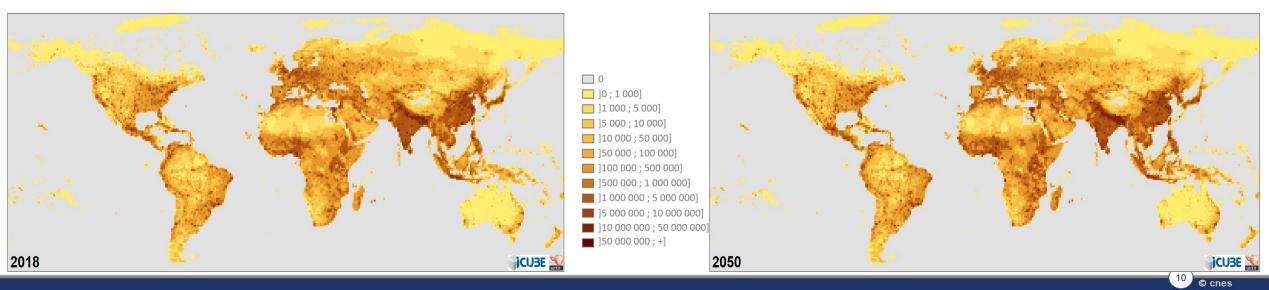

Re-entry Safety : Modeling


- Fragmentation : Mecanical & Thermal joints experimental & numerical tests (ADS/ArianeGroup)
- Mecanical stress : Implementation and adaptation of PAMPERO (Rtech) for mecanical computation in complex vehicle
- Wind tunnel : Wind tunnel test (VKI) for complex shape knowledge improvement and implementation in DEBRISK
- Incertitude :Improvement of aerodynamic spinning & damping moment during reentry(R-S18/PF-0002-098)





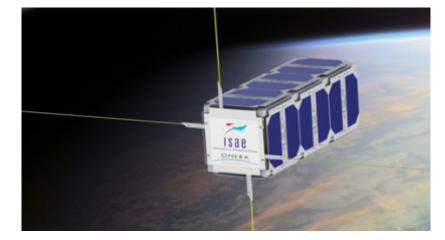
Re-entry Safety : Modeling


Risk of atmospheric reentries on aircrafts

- Qualitative and quantitative arguments to compute the risk for aircrafts to be hit by a space debris in its reentry phase
- The vulnerability of aircrafts is mitigated by already existing protections to external hazards (PRAs).
- Update of air traffic density map using ICAO database Use of Electra tool to compute the risk
- Study of the effect of wake on atmospheric reentry (R-S14/PF-0002-060)

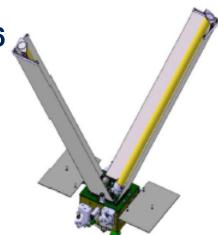
I & DUITIESUL TRAITICTLOW ZUIZTAS

Population model : major contributor in probability assessment of human risk => improvement of population model by mergin and extrapolate UN World Population Prospects and GPW.



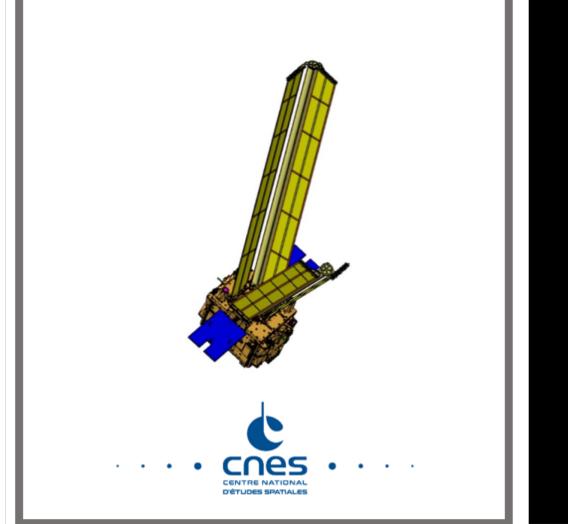
Re-entry Safety :<u>Reentry Observation</u>

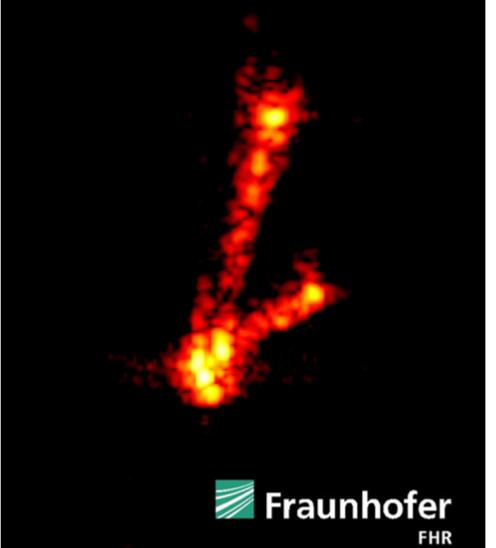
- Advanced Studies : Experimentation for reentry observation demonstrator coupled with Assisted Natural Reentry
- Futur activities envisaged
 - Exploitation of Rentry Sat data: ISAE project with the help of Janus Program in CNES



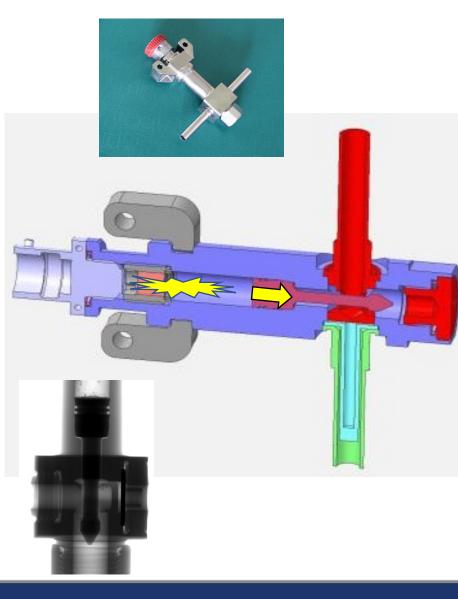
Space Sustainability : End of Life

- Internal study to conclud of the Feasibility of Natural Assisted Reentry (R-S18/BS-0005-041)
- Internal study to Defining an AOCS Mode for PMD in survival mode (R-S18/PF-0002-095)
- Studies on System impact of taking into account 0.9 of PMD vs 0.85 (TAS and ADS)
- Success of Microscope IDEAS system which has been deployed 16 october 2018





Satellite MICROSCOPE du CNES avec ses 2 ailes de désorbitation déployées (17/10/2018) Modèle CAO (à gauche) et image radar capturée par le système TIRA du Fraunhofer Institute (à droite)


13 © cnes

14) © cnes

Space Sustainability : End of Life

Equipment qualification

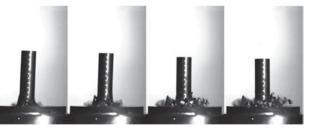
Depletion of the fluids

CNES has developed and qualified the microperforator, the more feasible and cheapest system in short terms

- it punches the tubing with a projectile and releases the pressurization gas
- It is CNES qualified and it has been tested with propellant and vapors with success

Tuesday 23 October to Thursday 25 October 2018 Clean Space Industrial days

Space Sustainability : Protection/Vulnerability


Hypervelocity impact : debris generation/spacecraft reliability

- Debris cloud model (Impetus) :
 - Numerical work:Get the description of the characteristics of the debris cloud generated by an Hyper Velocity Impact.

MLI efficiency against MMOD threat (Thiot Ingénierie)

Experimental work :Evaluation and update of standard MLI ballistic limits with stand-off at high velocities (up to 10 km/s)

Battery

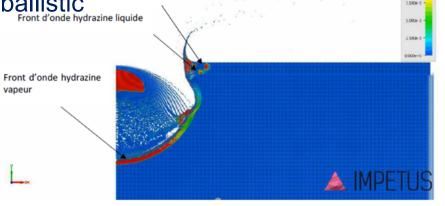


Figure 11 Modèle 2D axisymétrique Impetus t=0,68µs et 1µs

- Tech For Space Care will continue and emphasis the SRL activities that made CNES very active and concern on this topic.
- The French Space Law will be totally applicable without transient measure anymore at the end of 31st December 2020
- Increasing contributors in the space domain must push all the community to take the space sustainability as the keystone of the future beneficial activities