ESA CLEANSPACE Industry Days _ 23-25 /10/2018

AEROSPACE, DEFENCE & RAILWAYS

altran

Reaction Wheels Assemblies are DEMISE - problematic for LSI LEO S/Cs

B11 investigated several options & proposed several D4D Initiatives

<u>Option 1 : Mechanical Upgrade (-11% inertia - Iso Volume - Iso Mass ?)</u>
=> Take opportunity of RCD Initiative on **Monobloc Flywheels (68Nms)** ALTRAN D4D Design (RSI68) with flywheel material swap Steel->Aluminium

<u>Option 2 : Electrical Upgrade (</u>-45% inertia – PWR x2 – Iso Mass?)
=> Take opportunity of RCD Initiative on High-Torque Electronics (BBM, EQM)
Mechanical downsizing (RSI45) & Increase of Speed and Torque Capabilities
GOAL: DEMISE COMPLIANCE and AOCS performance increased to COMPLIANCE

Option 3 : Internal D4D techniques (BBU : Ball Bearing Unit)
Internal Dismantlement, Core Material Swap, Re-use of Magnetic Wheels Technologies,
Core Down-sizing (Ball Bearing Unit Assembly)

Main DEMISE Investigations & Results : DEBRISK v2015: S/Ctest = S3 & S1 P/F

- BB11_Options 1&2 demonstrated MARGINAL COMPLIANCE (DEBRISK > 78km)
- BB11_Options 1&2 demonstrated NON-COMPLIANCE (DEBRISK <78km)</p>
- Securisation needs ADDITIVE D4D Techniques

Main DEMISE Investigations & Results :

Impact of Alternative Design: Material (Cu/Al/Ni) & Size (RSI 68/45/12) & Diameter

Conclusions :

- DEMISE impact : Al > Cu > Ni & DEMISE vs Inertia Efficiency : Cu > Al > Ni
- Size impact : BBU Demise always PROBLEMATIC for COMPLIANCE @ 65km Alt
- > Diameter Impact : Larger Al Flywheels degrade RSI68 ballistic coefficient

Main DEMISE Investigations & Results

o RWC_Flywheel: details Flywheel in RW **Coarse model** (Core attached to Flywheel) o RWC Core: detail Core element in RW **Coarse model** (Core demise after flywheel)

o Core Dismtl: Core in **dismantlement scenario** Flywheel / Core

o Flywheel_Dismtl: Flywheel in **dismantlement scenario** Flywheel / Core

o RWD_BBU: details BBU block (with no dismantlement) in **Detailed model**o RWC_Core: detail Core element (with no dismantlement) in **Coarse model**o BBU_Dismtl_Early: Dismantlement of **each BBU part** after **Housing demise**o BBU_Dismtl_Late Dismantlement of **each BBU part** after **Flywheel demise**

- BBU Dismantlement is promising but raise risk on flywheel (Al->Cu?)
- BBU parts EARLY dismantlement sound the more promising but more risky
- BB11_Options 3 demonstrated CHALLENGING COMPLIANCE (DEBRISK<78km)</p>

Main DEMISE Investigations & Results :

DEBRISK vs TAS-I & SCARAB (2015): +10% Ablated Mass / -10km release altitude

ESA UNCLASSIFIED - For Official Use - Clean Space Industrial Days 2017

Main RECOMMENDATIONS :

At RWA Equipment Level: Inspiration=NASA Goddard DEMISE Wheel

- Flywheel **spokes-brazed** design -> **Monobloc** (risk of several debris /uncontrolled release)
- RW Housing as thin & DEMISE as possible (few impact: 2km Alt / 1mm)
- Flywheel & large apertures spoke-like design: see RSI designs vs Simu models)
- Drive Electronics: **External unit** instead of internal: see RCD(S1&S3) vs MOOG(S2)
- Internal **Dismantlement techniques** assessed as DEMISE-attractive but **risky** (case by case)
- Material swap (Core parts only) too risky for BBU & tribology aspects

RCD Position : "Don't change smtg working!!"=>Risk on 40 years flight heritage

=> Main BB Lessons learnt: Manage D4D Techniques @ S/C & P/F level instead

At S/C Architectural Level :

- RWA **External S/C** location (Airbus @ ESA D4D S/C activity)
- RWA on **Easy dismountable** panel (Thales @ ESA D4D S/C activity)
- RWA mounted on **Release I/Fs** SMA Mechanisms (ALTRAN BB10 CLEANSAT)
- RWA mounted on RWA (+Tank?) Architectural **DEMISE Block** (ALTRAN BB proposal)

Roadmap : => Assumed **NO CHANGE since CLEANSAT** BB11 closure

But ALTRAN/RCD NDA ended early 2018 => No MORE Feed-Back from RCD

At RCD Level:

- EBBM EU units -> Status ?
- EQM EU Units -> Status ?
- Large Monobloc FlyWheel Redesign -> ?
- ESA TRP BBU demise improvement -> KO ?
- ESA CLEANSAT V2 Demise Wheels RFP ?

: RCD development Roadmap for 50V-HP-electronics and XL monobloc flywheel

At ALTRAN Level:

- Support for Mechanical Large Flywheel Redesign (BB11 REX)
- Support for Design for Demise Techniques inside RWA
- Support for Demise DRAMA/DEBRISK simulations Coarse model (D4D trends)
- Support for Demise Material DATABASE: ALTRAN RESEARCH/ESTIMATE/Others ?
- Collaboration with **HTG -> SCARAB** Detailed model simulation of best technique ?

BB10 – Shape Memory Alloys Mechanisms

Shape Memory Alloys are used as **Release devices** <u>activated by temperature</u>

Application: → S/C Controlled Dismantlement (asset for uncontrolled re-entry)

Step1 : D4D Release Devices Applications on S/C

- Appendage Dismantlement, Structural Frames dismantlement
- Panels Dismantlement, Modules Dismantlement P/F vs P/L ?

Step2 : Release Mechanisms Investigations & Pre-Design

Frangilbolts, Mechanisms, Cryofits, Pyro Cords : Pyro -> SMA?

Step3 : Shape Memory Alloys Development & Investigations

- European Supply source of Frangibolt®-like TiNi alloys
- **H**igh-**T**emperature SMA development + **UHT** SMA investigation

nimesis

altran

Step4 : SAT Thermal Characterization Analysis in Pre-Rentry >100km => Activation T° Triggering vs Safety Margin (Internal / External)

OHB

*

European Space Agency

ThalesAle

BB10–SMA Mechanisms

Outcomes: Baselined devices

- 1. SMA Washers (Struts, Screws, Clamp Band) **SMA Inserts** (middle & end CFRP panel insert)
- 3. SMA Sleeves (Struts, P/L Booms)

1.

2.

Child Fage

Entratoise en AMF comprimé.

- 4. SMA Cutting Cords (Tubular frames)
- 5. SMA Hinges (Fold Panel & Release at end)

4.

altran nimesis

BB10–SMA Mechanisms

PROS & CONS : Concept 1 : SMA Washers

Active & Passive devices available	Screw Tension @ 50% Screw Rupture			
Simple & Rustic / Testable / Reusable /Demise	M6 Design => M5 Tension (screw striction)			
Triggering T ^o : <75-125°C (NT) / <100-250°C (HT)	CTE: (NT=11->Ti) (HT=17-> SS & Ti?)			
Safety Margin T ^o : 35°C (NT) / 50°C (HT)	OverLength => 4D (washer & screw)			
TRL:NT=6 / HT=5->ESA-OHB dismantlement Test @ DLR !!	Density: 6-7 (Mass x4 vs Standard I/Fs)			
TECHNICAL DATA	TECHNICAL DATA			

BB10–SMA Mechanisms

2.

More Complex: Tribology & Mechanisms

More Parts: Iso - RCost?

Concepts Evolution :

(2016 - > 2018)

TRL: 3 -> 4 (end 2018) -> 5 (OHB tests 2019 ?)

Development / Validation: Higher NRCost

OHB

*

PROS & CONS : Concept 2 : SMA Inserts : Thread parts enlaced & released with SMA actuator

Lessons Learnt :

Device Actuator:

SMA resistance Cold/Hot 1:4

(screw tension axial/radial need large amount of SMA)

=> **No Cold SMA** for structural purpose

Metallic Elastic Return after 40yrs is erratic

Shock Release Helps !! (to be adapted for SMA)

Device Mounting : **Rear / Front** (1.2.3.)

3.Blocking part push released under screw/thread radial tension

Device Tension : 1.Spring Wire / 2. Strip Spring

Compact Cylinder Panels Inserts fits Everywhere

Same SMA Materials & supplier / Same PROS Dismountable / Testable / Reusable / Demise **ISO-Screw I/F** definition => Length/Diameter/Material **ISO-Thread I/F** (TBC) => Tension/Material/Torque **FEW SMA material** => Not used in I/F structural path Compact & Light => 50% mass saving vs Frangibolts

1. SMA Springs / 2. Small Frangibolt / 3. Belleville SMA Washers altrar nimesis IRBUS DEFENCE & SPACE

European Space Agency

ThalesA

BB10-SMA Mechanisms

ROADMAP : => Almost **NO CHANGE since CLEANSAT** BB10 closure **NOTA: ALTRAN/NIMESIS partnership is now more than 4 Yrs Old !! At NIMESIS Level:**

- CNES R&T (large SMA-HT parts engineering) -> Starting right now !!
- Concept 1 Design authority : SMA Washers
- SMA Mechanical Characterization
- SMA Alloy Process Engineering / Development / Production

At ALTRAN Level:

- Concept 2 Design authority : **SMA Inserts** / Other D4D mechanisms
- Impacts on Satellite architecture & Design for Demise
- Space Qualification Documentation (Test plan / Test reports / File Justification)
- Support for Product & Qualification Assurance / Material & Process compliance

At PARTNER(s) Level: => TBD (every partner & customers are WELCOME !!)

- Mechanism Assembly / Integration / Environmental Tests (Qualification Phase)
- Mechanism Assembly / Integration / Environmental Tests (Mass Production Phase)

PS: Thanks to OHB Team for their Intention Letter @ ESA ITI initiative 2017

SPIN-OFF : Reentry Simulation

TOPIC : S/C Thermal Characterisation

ALTRAN_ESATAN S/W on S/C Thermal Models

Correlated Model (post CDR & TVAC thermal balance)

=> Full Representativity of Th couplings / Accuracy Int & Ext

APPROACH : S/W Reentry Trajectography

DEBRISK-DRAMA Trajectory (no attitude) +

Aerothermal Flux calculation = f° (alt, time) (Free molecular - Non Tumbling Box)

Assumed Non-Tumbling (REALISTIC: SAW trail drag)

=> Considered as a Worst Case (T° Gradient) CONCLUSION:

- \Rightarrow Worst Hot Case : Front MLI Faces : 250–300°C
- \Rightarrow Worst Cold Case : Rear Faces : <0°C

 L t DEBRISK (s)	Altitude (Km)	Aero Th (W/m²) Flux	Corrected Alt (Km)	t ESATAN {s)	Ext T* Max (*C)	Ext T* STR (*C)
32 222	131 115	1 638	110 860	32220	185	116
32 262	130 477	1 729	110 163	32260	190	120
32 302	129 734	1 842	109 454	32300	196	125
32 342	128 887	1 982	108 735	32340	234	156
32 382	127 938	2 158	108 006	32380	239	166
32 422	126 890	2 377	107 268	32420	245	178
32 462	125 747	2 652	106 522	32460	255	185
32 502	124 514	2 998	105 770	32500	269	197
32 542	123 194	3 433	105 012	32540	284	235
32 582	121 795	3 997	104 249	32580	302	250
32 622	120 323	4 733	103 481	32620	324	270
32 662	118 784	5 705	102 709	32660	350	292
32 702	117 185	7 005	101 933	32700	379	319
32 742	115 534	8 802	101 152	32740	415	351
32 782	113 837	11 290	100 366	32780	460	390
32 822	112 102	14 862	99 573	32820	512	436
32 862	110 334	20 246	98 771	32860	575	493
32 901	108 604	27 526	97 984	32900	648	514
32 942	106 740	35 608	97 295	32940	725	531
32 980	104 965	51 531	96 297	32980	809	594
33 022	103 005	72 499	95 351	33020	903	665
33 061	101 165	100 273	94 425	33060	1008	745
33 097	99 456	135 621	93 523	33100	1124	831

SPIN-OFF : Reentry Simulation

TOPIC : S/C Dynamic Characterisation

ALTRAN_NASTRAN S/W on S/C CAD model Full Geometrical Correlated Model (post CDR CAD design) \Rightarrow Full Representative of external shapes & Accurate MCI (inertias) \Rightarrow No remodelisation

APPROACH: S/W Reentry Trajectography DEBRISK-DRAMA Trajectory (no attitude) + Dynamic Characterisation (NASTRAN) Flux direction & intensity : MSISE-00 assumption = f (alt, time) => 3 axis Torque & Force NASTRAN characterisation per Azimut/Elevation (Only front faces exposed to Flux produces Torque -> shadowing effect)

NEXT STEP: (Reuse of 3D LAUNCH/ ORBIT & 3D AOCS simulator -> 6D)

Simulation S/W: Torques/Forces during Reentry step by step

- ⇒ Attitude & Dynamic rate on Reentry Trajectory => INPUT for ESATAN
- ⇒ **Downtrack/CrossTrack impact** vs initial Trajectory => **Google Earth** Movie

CONCLUSION: (Expected End 2018)

Dynamic & Attitude Determination in high Atmospheric perturbation

- ⇒ Uncontrolled Reentry : 3 Axes Dynamic Behaviour (-> ESATAN)
- \Rightarrow Controlled Reentry : Attitude Control (or NOT) in low perigee

SPIN-OFF : ALTRAN / CLEANSPACE

TOPIC: EXTENSION of **"CLEANSPACE"** Spin Off @ ALTRAN = "GREENSPACE Community "?

ALTRAN RESEARCH Toulouse _ CIR "SPACE CLEANER " ADR Research - Small Debris / Large Quantity / High Rate Contacless Capture \Rightarrow Main FOCUS on multiple RDV capability & optimisation in debris swarm \Rightarrow GTOC 9- Like initiative & Exercise

ALTRAN Aerospace Toulouse_ Life Cycle Assessment Expertise Environmental Impact of Aerospace Production/Operations* ALTRAN Aerospace Cannes _ SPACE SAFETY Expertise Space Industry Material/Process Database -> REACH compliance

ALTRAN RESEARCH Toulouse _ CIR NACIN Airliner Engine Exhaust section optimised by SMA actuators => SMA FEM simulation Codes for behaviour prediction

ALTRAN RESEARCH Aix _ CIR INSIDE

3DPrinted – Heat exchanger development -> **Industry 4.0** Topics : Topological design optimised for Thermal/Mechanical Efficiency

Échangeur thermique standard (Lytron)

inside

Concept d'échangeur thermique (Within)

Séquences obtenues pour 10 débris ayant un ΔV total inférieur 1300 m/s

altran

For all contacts :

AEROSPACE, DEFENCE & RAILWAYS

ALTRAN RESEARCH Space Innovations - CIR MMOD

Stéphane HEINRICH

Senior Consultant Quality & Safety Manager – Aerospace Systems Expertise Division Aerospace Defense & Railways

> ALTRAN CANNES Space Design office SPACE CAMP Bat. Y02 - 4, allée des cormorans F-06150 Cannes la Bocca – FRANCE Tel. : +33 (0)4 92 19 68 20 Mob. : +33 (0)6 31 54 27 25

Team Leader : S.HEINRICH

Research Leader: S.CHAU

Sponsor : P.BONAVITA

Altran Research

Marseille France

1st Stage : Reentry & Reuse

2nd Stage : Reentry & Reuse

3rd Stage : Reuse in Orbit

Meet us in 2018 at :

cne

TEAM Presentation

ALTRAN Research @ Cannes : CIR MMQL

ALTRAN RESEARCH GreenSpace: · CIR MMOD

Mitigation Measures for Orbital Debris

AEROSPACE, DEFENCE & RAILWAYS Robustness to Micro-Debris

Atmospheric Reentry

altran

TEAM Presentation

ALTRAN_FR Key Personnel:

Stephane Heinrich is a senior ALTRAN consultant

with experience working for customers on-site such as Thales, Airbus, Safran Groups. With almost **25 years experience,** he mostly worked on space and **ESA projects** (GOMOS - IASI instruments, ATV avionics chain, PLANCK, Sentinel-3 satellites).

He has a clear expertise in **avionics and propulsion equipments**. He was trained by TAS-F dependability and safety department and IAASS in ALTEC_I He is an IAASS professional fellow attending most **space safety** conferences

He is currently leading an ALTRAN Research Team working on Space Debris topics : "MMOD : Satellite Robustness to Micro-Meteoroid and Orbital Debris" "ODAR : Orbital Debris Atmospheric Reentry" for satellite & launchers

"**MMOD L/V** : Mitigation Measures for Orbital Debris of Launch Vehicles"

Arthur HUMBERT is a Young Graduate Trainee from ESTACA-ISAE He is involved as internship at ALTRAN Research in innovative studies relative to Launchers technologies and performance He is the former leader of SPACE ODYSSEY (rockets building / testing)

Altran Research

