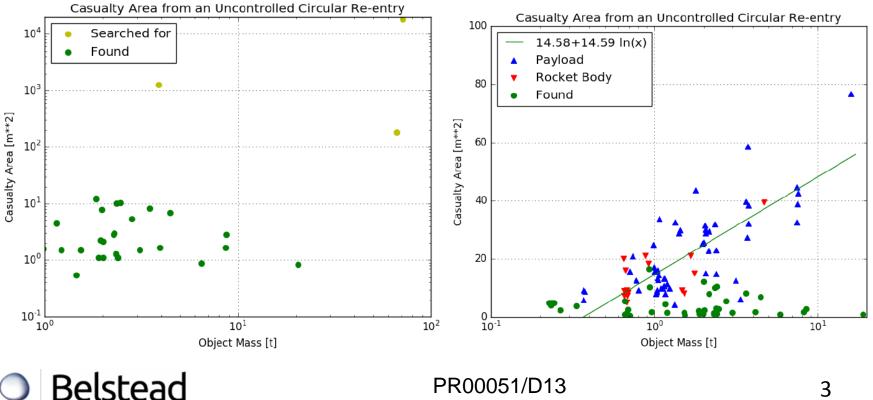


Probabilistic Assessment of Destructive Re-entry

James Beck, Ian Holbrough; Belstead Research, Jim Merrifield; Fluid Gravity Engineering, Stijn Lemmens; ESA-ESOC, Simone Bianchi TAS-I, Martin Spel; R.Tech, Daniel Briot; Airbus DS, Edmondo Minisci, University of Strathclyde, Pierre Omaly; CNES ESA Clean Space Industrial Days, 23th-25th October 2018 PR00051/D13

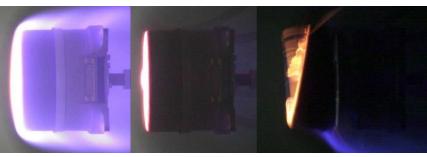

Re-Entry Risk Assessment

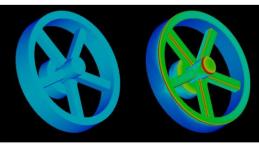
- Drivers for Demisability Assessment
 - Casualty risk limit of 1:10000 per re-entry event
 - Limiting for uncontrolled re-entry for reasonably sized spacecraft
 - Change the design to achieve the limit
- Many Re-entries Historically
 - Over 33000 tons
 - Over 24000 events (mostly uncontrolled)
 - About 50 events directly linked to source objects
 - Only three re-entry events have had searches for debris

Re-Entry Risk Assessment

- **Recovery Campaigns**
 - The casualty area from large ground objects •
 - Simulation does not necessarily match (limited) observations ٠

Current Assessment Approach


- Destructive Re-entry Tools are 'Engineering Level'
 - Range of complexity
 - Object oriented (DRAMA v2, DEBRISK, ORSAT)
 - Spacecraft oriented (SCARAB, PAMPERO)
 - Hybrid (SAM, DRAMA v3)
 - High levels of uncertainties
 - Limited agreement among the methods
 - The majority of the modelling is theoretical
 - Bookwork data with limited capture of phenomenology
 - More recently, some extrapolation from ground tests
- Current Procedure is 'Single Shot'


Belstead

Progress in Understanding

- Test Campaigns
 - Material properties
 - CHARDEM / CoDM
 - Ceramics, composites
 - Joint fragmentation phenomenology
 - D4DBB activity
 - Equipment demise
 - ReDSHIFT test campaign
- Theoretical Progress
 - Improved aerothermodynamic heating models
 - Improved material models

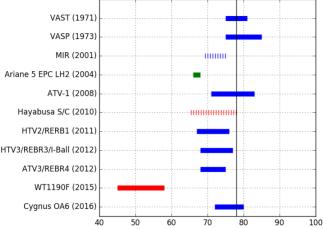
Design for Demise (D4D)

- Physics of fragmentation modelling
 - Not captured in *any* current tools
 - Many D4D techniques enhance the fragmentation
 - Understood physically
 - Representation in *all* tools is questionable
 - Impact of technique is difficult to quantify
 - Uncertainties are large
 - Stochastic approach appears to be a good idea
 - Capture the general impact, rather than the detailed physics
- Recent D4D Campaigns have used uncertainties
 - 1000 runs per case is used as standard in SAM campaigns
 - Reduces the impact of single items around demise threshold

Belstead

PADRE O Belstead

- Probabilistic Assessment of Destructive Re-entry
 - New ESA activity
 - Team blends scientific experts and large system integrators
- Objective: Pragmatic stochastic assessment of casualty risk consistent with research findings
 - Comprehensive assessment of the uncertainties
 - Physics and model representation issues
 - Mathematical framework to probabilistically assess re-entry risk
 - Assessment of capturing design for demise effects
 - Formulation of risk assessment procedure consistent with current regulatory framework

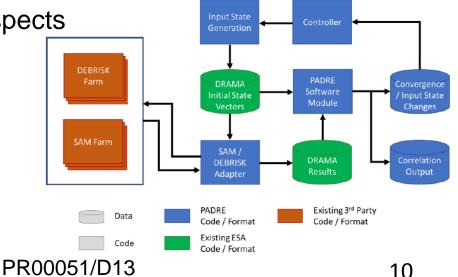

Physical Uncertainties

- Environment
 - Atmospheric density / space weather
 - High altitude winds
- Aerothermodynamics
 - Aerodynamic forces / moments
 - Aerothermodynamic heating
- Material Response
 - Emissivity, catalysis, conductivity (thermal contact quality)
 - Composites, ceramics ablation response
- Fragmentation Processes
 - Force transmission in heating vehicle and effect of spin

Belstead

Model Representation Uncertainties

- Spacecraft Fragmentation
 - Break-up altitude
 - Fragmentation process
 - Joint failure criteria, melt failure
 - Fragment number per component
- Aerothermodynamics
 - Complex shapes, rarefied flows
 - Shielding of components, heating in separated/cavity flows
- Component Representation
 - Shape and material approximations
 - Consistent rules required for consistent application


Geodetic Altitude [km]

Belstead

Stochastic Model

- Stochastic process description of re-entry
- Different statistical methods to be investigated
 - Trajectory uncertainties, break-up uncertainties
 - Likelihood of fragment survival; distributions of landing site
- Designed as a wrapper for current tools
 - Will be tested on DRAMA, DEBRISK and SAM within this study
 - Designed to capture hybrid aspects
 - 6dof, predictive fragmentation

Belstead

Test Cases

- Full Range of Test Cases
 - Uncontrolled, semi-controlled, controlled and interplanetary entry
 - Four baseline spacecraft (2 TAS-I, 2 ADS) to be used
 - Step through the design phases, simulate knowledge levels
- Three Trajectory Codes to be Used
 - DRAMA (baseline), DEBRISK, SAM (full discrepancy analysis)
 - Necessary convergence of statistics to be derived

Procedural Representation

- Statistical risk estimation procedure to be developed
 - Estimation for complete spacecraft and D4D features
 - Accounts for uncertainty limits in early development stages
- Some ideal principles for the procedure
 - Simplicity guide a general engineer through "experts world"
 - Consistency set of (simple) rules for inclusion of break-up criteria, D4D techniques, representation of critical equipment
 - Accuracy requirements for simulation numbers/convergence
 - Tool Independence tuning of the model to achieve consistent results using different breakup tools (may be unachievable)
 - Consensus with many stakeholders in the team, consensus over the procedure is a key goal

Belstead