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n ESA funded TRP 

n Furthering technology for ADR/Servicing
– Reducing the number of debris objects in 

space.
– Extending life or repairing damaged on-orbit 

assets attractive economic option for satellite 
operators

n Technical challenges Robotic Servicer:
– Control of uncertain coupled dynamics 

(spacecraft platform + robotic manipulator + 
and end-effector)

– Synchronization with fast tumbling targets
– Limitation of structural loads on arm

 

COMRADE: CONTROL & MANAGEMENT OF ROBOTICS 
ACTIVE DEBRIS REMOVAL

Introduction
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FULLY COMBINED CONTROL
n Fully combined control ( alternative to decoupled, tele-op, collaborative) 

- overcome the problem of arbitrary, case-tailored control authority, improve performance, savings

n Two control design approaches:
– H∞ and 
– nonlinear compliant Lyapunov-based).

ADR eDeorbit                                                         Servicing (ASSIST)
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SYSTEM SPECIFICATION
Introduction

Robotic Servicer Elements:
n AOCS sensors: IMU, star tracker, GPS
n Propulsion: 24x22 N thrusters (eDeorbit-based)
n Relative navigation:

– LIDAR for eDeorbit scenario
– Vison-based camera for re-fueling scenario

n Robotic manipulator: 7 DOF with joint encoders
n End-effector:

– PIAP developed gripper for eDeorbit scenario
– ASSIST re-fueling device developed by a team

led by GMV
n Control analysis and synthesis considers:

– Fuel sloshing
– Flexible modes (solar arrays and robotic

manipulator)
– Arm dynamics
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n Angular/linear Synchronisation of Chaser wrt target rotation
n Reach and Capture (Robotic arm deployment and target grasping)
n Rigidisation of robotic arm joints
n Stabilisation/detumbling of target rotation (for ADR case only)

GMV GMVADS

DLR

MISSION PHASES
Introduction
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GNC SYSTEM REQUIREMENTS
Introduction

Performance requirements:
n Synchronization control performance requirements (95%) for relative state (CoM to CoM):

– [100 mm    10 mm/s      2° 0.5°/s]  (6DOF control)

n Reach & Capture control performance requirements (95%) for relative to TGFF:
– [50 mm    5mm/s        2° 0.5°/s] (CoM wrt to point in TGFF)
– [10mm     5mm/s        2° 0.1°/s] (end-effector wrt to grasping point)

n Stabilisation control performance requirements (2σ):
– Angular rate of chaser+target dampened to 0.5°/s.

Safety requirements:
n Synchronization/Reach/Capture:

– Distance between chaser platform and target surfaces larger than 0.5m.

6



ARCHITECTURE
eg.:Reach and Capture



23/10/2018

n Synchronisation
– Robot arms is not active
– Forced motion to profile computed by guidance

n Reach and Capture 
– Station keeping at capture point 
– Gripper moves towards LAR
– Control issues: Force and Torque to RCS , Joint Torque Commands
– Capture = Reach + Gripper control (closure command)
*compliant control : stiffness and damping for end effector, chaser at set point

n Rigidisation of robotic arm joints:
– Thruster commands are inhibited
– Angular rates of joints controlled to zero
– Locking brakes are engaged

n Stabilisation/detumbling of target rotation (for ADR case only) – limit for joint 
torquers

n Escape : combined control that tracks a collision-avoidant guidance

MISSION PHASES
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CONTROL SYNTHESIS & ANALYSIS
H∞ synthesis / µ-analysis:
n LFT representation of the linearized flexible 

spacecraft model to account for parametric 
uncertainty.

n Two-Input Two-Output Port (TITOP) 
modelling paradigm for multi-body chains
[D. Alazard, J. Alvaro Perez et al.]

n The control synthesis methodology adopted 
is H∞ Mixed Sensitivity Design.
– The H∞ control approach is added upon a 

nonlinear precompensation by computed 
torque control (feed-forward)

– Shaping the sensitivity functions in order 
to achieve robust stability and 
performance. 

– Requirements are translated into 
frequency domain weights (of MIMO 
nature). 
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CONTROL SYNTHESIS AND ANALYSIS

µ-analysis results for 
Synchronization H∞ controller 
Robust stability

 

 

 

µ-analysis results for 
Synchronization H∞ controller 
Robust performance

Synchronization phase
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CONTROL SYNTHESIS AND ANALYSIS

µ-analysis results for 
Stabilization H∞ controller: 
Robust stability

µ-analysis results for 
Stabilization H∞ controller: 
Robust performance
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CONTROL SYNTHESIS AND ANALYSIS
Non-linear compliance control method:
n Impedance controlled arm is able to follow a given trajectory in free motion, and at the same time 

exhibits a desired disturbance response (i.e. impedance) when in contact with the environment.
n Shaping only the stiffness and damping, while keeping the inertial behaviour unchanged.

n Reach/Capture phase: 
– Generalization of passivity based compliance.
– Aiming at a closed loop structure as the one resulting from PD+ control in case of fixed base 

manipulators.
– Stability analysis (an strict Lyapunov function for the PD+ control is available in literature, proving 

asymptotic stability).

n Rigidization phase 
– Damping of the remaining relative velocity.
– A PD control with bounded input (saturation effect) has been used. 
– Stability is proved in literature under the condition that the saturation function for the PD torque 

controller must be a strictly increasing linear saturation function.
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HEALTH MONITORING SYSTEM
Failure Tolerant Control (FTC) system:
n Failure Detection and Isolation (FDI)

– 4 of the 24 thrusters have been identified as 
the most problematic from a FDI viewpoint
(stuck-open or stuck-closed failures)

– Bank of 4 dedicated H∞ UIOs 
n The Accomodation of the failure (after

isolation) through the use of the system total or
partial redundancies
– The dwell-time supervisory-based FDA 

solution (recently extended, by IMS 
Laboratory to the virtual actuator paradigm).

– Goal: select timely the suitable FTC controller 
from a bank of virtual actuators.
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RESULTS (MONTECARLO)

Reach Phase MC, gripper performance (Hinf controller). Reach Phase MC, gripper performance zoomed (Hinf controller).
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RESULTS (MONTECARLO)

Reach Phase MC, gripper performance. (non-linear compliant controller)
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RESULTS AND CONTROLLERS COMPARISON
Monte Carlo test campaign:
n Synchronisation phase (only H∞ robust control):

– The obtained Control errors are within 
specifications

n Reach phase (both H∞ robust controller and non-
linear compliant controller):
– Both controllers behave similarly, with the 

nonlinear compliant controller having tighter 
tracking in pointing accuracy

n End-effector performance::
– Position and pointing accuracy requirements 

met by both controllers
– Velocity and angular rate accuracy requirements 

are overpassed by both controllers, with lower 
error mean value for the H∞ control (over 
Monte Carlo test campaign).

 Synch. phase Reach phase 
 H∞ H∞ Nonlinear Compliant 
Position [m] 0.067±0.028 0.023±  0.008 0.026±  0.011 
Velocity [m] 0.006±0.002 0.002± <0.001 0.001± <0.001 
Pointing [deg] 1.544±0.619 0.318±  0.153 0.105±  0.077 
Angular rate [deg/s] 0.155±0.089 0.075±  0.041 0.114±  0.047 

 

End-Effector Performances H∞ Nonlinear Compliant 
Position [m] X -0.001±0.004 0.004±0.003 

Y 0.002±0.005 0.005±0.003 

Z -0.001±0.004 0.003±0.002 
Velocity [m] X 0.001±0.003 0.004±0.003 

Y 0.001±0.003 0.005±0.003 

Z -0.001±0.002 0.005±0.003 
Pointing [deg] X -0.016±0.105 0.120±0.084 

Y -0.033±0.140 0.086±0.054 

Z -0.015±0.293 0.182±0.113 
Angular rate [deg/s] X 0.011±0.073 0.520±0.335 

Y -0.004±0.098 0.286±0.217 

Z 0.029±0.191 0.434±0.314 
 

17



23/10/2018

RESULTS AND CONTROLLERS COMPARISON
n Rigidization phase:

– The achieved joint position error for the H∞ robust controller 
is 60% of the one for the compliant controller case.

– For joint velocity, the error achieved for the H∞ robust 
controller is 21%, of the one for the compliant controller case

– Probably, better results can be obtained (future work) for the 
non-linear compliant control by a more adjusted tuning of the 
position gains in case a specific requirement for the joint 
positions is given.

n Stabilization phase:
– Requirements (ENVISAT case) are comfortably met

Rigidization H∞ Nonlinear 
Compliant 

Angle [deg] 1.618±0.809 2.710±1.169 
Angular rate 
[deg/s] 

0.016±0.013 0.078±0.030 

Initial angular 
velocity [deg/s] 

0.14±0.20(1σ) 
(Max=3.02) 

(1,1,1,1,1,1,1) 

Maximum torques 
around the 
actuation axis (z) 
for all the 7 joints 
[Nm] 

(3.87, 12.23, 
3.42, 29.80, 
12.28, 8.11, 

28.10) 

(10.94, 12.89, 
19.83, 50.10, 
17.16, 23.32, 

41,45) 

Simulation time[s] 120 s 120 s 
 

Stabilization  H∞ 
Angular rate [deg/s] X -0.023 

Y 0.006 
Z 0.013 
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CONCLUSIONS
CONCLUSIONS

COMRADE project has currently finalized the Model-in-the-Loop (MIL) level validation phase with successful 
results and will now enter into the Processor-in-the-Loop (PIL) and HW-in-the-Loop (HIL) validation level. 

From MIL-based design/validation phase: 
n Approach/synchronization phase has considered robust H∞ 6DOF controller over a rigid body with 

sloshing and flexibility (solar arrays, stored robotic manipulator) effects as main perturbations. 
n Reach, capture and rigidization phase has considered a dual approach and implementation (both 

controllers have demonstrated to be valid options with some better performance results obtained for the 
first one):
– Robust H∞ 13DOF controller over a multi-body system composed by the spacecraft platform plus a 

robotic manipulator with 7DOF (and grasping/re-fueling end-effect at the end).
– A compliance/impedance 13DOF controller over the same multi-body system as for the robust H∞ 

controller.
n Stabilization/detumbling phase has considered robust H∞ 3DOF attitude controller over the full 

composite (chaser S/C + target S/C + rigidized robotic manipulator joining both vehicles) with sloshing 
and flexibility effects as main perturbations. 

n Advanced FDA/FTC techniques have been also considered as an additional Failure Detection and 
Accommodation layer on top of the nominal control design.
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