Clean Space Industrial Days 2018 COMRADE - FULLY COMBINED CONTROL FOR ROBOTIC SERVICING SPACECRAFT

© GMV, 2018 Property of GMV All rights reserved

COMRADE: CONTROL & MANAGEMENT OF ROBOTICS ACTIVE DEBRIS REMOVAL

ESA funded TRP

- Furthering technology for ADR/Servicing
 - Reducing the number of debris objects in space.
 - Extending life or repairing damaged on-orbit assets attractive economic option for satellite operators

Technical challenges Robotic Servicer:

- Control of uncertain coupled dynamics (spacecraft platform + robotic manipulator + and end-effector)
- Synchronization with **fast tumbling** targets
- Limitation of structural loads on arm

FULLY COMBINED CONTROL

- Fully combined control (alternative to decoupled, tele-op, collaborative)
 - overcome the problem of arbitrary, case-tailored control authority, improve performance, savings
- Two control design approaches:
 - $H\infty$ and
 - nonlinear compliant Lyapunov-based).

ADR eDeorbit

Servicing (ASSIST)

SYSTEM SPECIFICATION

Robotic Servicer Elements:

- AOCS sensors: IMU, star tracker, GPS
- Propulsion: 24x22 N thrusters (eDeorbit-based)
- Relative navigation:
 - **LIDAR** for eDeorbit scenario
 - Vison-based camera for re-fueling scenario
- Robotic manipulator: 7 DOF with joint encoders
- End-effector:
 - PIAP developed **gripper** for eDeorbit scenario
 - ASSIST re-fueling device developed by a team led by GMV
- Control analysis and synthesis considers:
 - Fuel sloshing
 - Flexible modes (solar arrays and robotic manipulator)
 - Arm dynamics

Architecture

Introduction MISSION PHASES

- Angular/linear <u>Synchronisation</u> of Chaser wrt target rotation
- Reach and Capture (Robotic arm deployment and target grasping)
- <u>Rigidisation</u> of robotic arm joints
- Stabilisation/detumbling of target rotation (for ADR case only)

GNC SYSTEM REQUIREMENTS

Performance requirements:

- Synchronization control performance requirements (95%) for relative state (CoM to CoM):
 - [100 mm 10 mm/s 2° 0.5°/s] (6DOF control)
- **Reach & Capture** control performance requirements (95%) for relative to TGFF:
 - **[50 mm 5mm/s 2° 0.5°/s]** (CoM wrt to point in TGFF)
 - **[10mm 5mm/s 2° 0.1°/s]** (end-effector wrt to grasping point)
- **Stabilisation** control performance requirements (2σ):
 - Angular rate of chaser+target dampened to 0.5°/s.

Safety requirements:

- Synchronization/Reach/Capture:
 - Distance between chaser platform and target surfaces larger than **0.5m**.

ARCHITECTURE

gn/°

MISSION PHASES

Synchronisation

- Robot arms is not active
- Forced motion to profile computed by guidance

Reach and Capture

- Station keeping at capture point
- Gripper moves towards LAR
- Control issues: Force and Torque to RCS , Joint Torque Commands
- Capture = Reach + Gripper control (closure command)
- *compliant control : stiffness and damping for end effector, chaser at set point
- Rigidisation of robotic arm joints:
 - Thruster commands are inhibited
 - Angular rates of joints controlled to zero
 - Locking brakes are engaged
- Stabilisation/detumbling of target rotation (for ADR case only) limit for joint torquers
- Escape : combined control that tracks a collision-avoidant guidance

CONTROL SYNTHESIS & ANALYSIS

H_{∞} synthesis / μ -analysis:

- LFT representation of the linearized flexible spacecraft model to account for parametric uncertainty.
- Two-Input Two-Output Port (TITOP) modelling paradigm for multi-body chains [D. Alazard, J. Alvaro Perez et al.]
- The control synthesis methodology adopted is H_∞ **Mixed Sensitivity** Design.
 - The H_∞ control approach is added upon a <u>nonlinear precompensation</u> by computed torque control (feed-forward)
 - Shaping the sensitivity functions in order to achieve <u>robust stability and</u> <u>performance</u>.
 - Requirements are translated into <u>frequency domain</u> weights (of MIMO nature).

CONTROL SYNTHESIS AND ANALYSIS

CONTROL SYNTHESIS AND ANALYSIS

CONTROL SYNTHESIS AND ANALYSIS

Non-linear compliance control method:

- Impedance controlled arm is able to follow a given trajectory in free motion, and at the same time exhibits a desired disturbance response (i.e. impedance) when in contact with the environment.
- Shaping only the **stiffness and damping**, while keeping the inertial behaviour unchanged.

Reach/Capture phase:

- Generalization of **passivity based** compliance.
- Aiming at a closed loop structure as the one resulting from PD+ control in case of fixed base manipulators.
- **Stability analysis** (an **strict Lyapunov function** for the PD+ control is available in literature, proving asymptotic stability).

Rigidization phase

- Damping of the remaining relative velocity.
- A PD control with bounded input (saturation effect) has been used.
- Stability is proved in literature under the condition that the **saturation function** for the PD torque controller must be *a strictly increasing linear saturation function*.

HEALTH MONITORING SYSTEM

Failure Tolerant Control (FTC) system:

- Failure Detection and Isolation (FDI)
 - 4 of the 24 thrusters have been identified as the most problematic from a FDI viewpoint (stuck-open or stuck-closed failures)
 - Bank of 4 dedicated H∞ UIOs
- The Accomodation of the failure (after isolation) through the use of the system total or partial redundancies
 - The dwell-time supervisory-based FDA solution (recently extended, by IMS Laboratory to the virtual actuator paradigm).
 - Goal: select timely the suitable FTC controller from a bank of virtual actuators.

RESULTS (MONTECARLO)

Reach Phase MC, gripper performance (Hinf controller).

Reach Phase MC, gripper performance zoomed (Hinf controller).

RESULTS (MONTECARLO)

Reach Phase MC, gripper performance. (non-linear compliant controller)

23/10/2018 16

RESULTS AND CONTROLLERS COMPARISON

Monte Carlo test campaign:

- Synchronisation phase (only H∞ robust control):
 - The obtained Control errors are within specifications
- **Reach phase** (both H∞ robust controller and nonlinear compliant controller):
 - Both controllers behave **similarly**, with the nonlinear compliant controller having tighter tracking in pointing accuracy
- End-effector performance::
 - Position and pointing accuracy requirements met by both controllers
 - Velocity and angular rate accuracy requirements are **overpassed** by both controllers, with lower error mean value for the H∞ control (over Monte Carlo test campaign).

	Synch. phase	Reach phase	
	H^{∞}	H_{∞}	Nonlinear Compliant
Position [m]	0.067 ± 0.028	0.023 ± 0.008	0.026 ± 0.011
Velocity [m]	0.006 ± 0.002	$0.002 \pm < 0.001$	$0.001 \pm < 0.001$
Pointing [deg]	1.544±0.619	0.318 ± 0.153	0.105 ± 0.077
Angular rate [deg/s]	0.155 ± 0.089	0.075 ± 0.041	0.114 ± 0.047

End-Effector Performances		H^{∞}	Nonlinear Compliant
Position [m]	Х	-0.001 ± 0.004	0.004 ± 0.003
	Y	$0.002{\pm}0.005$	0.005±0.003
	Z	-0.001 ± 0.004	0.003±0.002
Velocity [m]	Х	0.001 ± 0.003	0.004 ± 0.003
	Y	0.001 ± 0.003	0.005±0.003
	Z	-0.001 ± 0.002	0.005±0.003
Pointing [deg]	Х	-0.016 ± 0.105	0.120±0.084
	Y	-0.033 ± 0.140	0.086±0.054
	Z	-0.015±0.293	0.182±0.113
Angular rate [deg/s]	Х	0.011±0.073	0.520±0.335
	Y	-0.004 ± 0.098	0.286±0.217
	Z	0.029±0.191	0.434±0.314

RESULTS AND CONTROLLERS COMPARISON

- Rigidization phase:
 - The achieved **joint position error** for the H_{∞} robust controller is 60% of the one for the compliant controller case.
 - For **joint velocity**, the error achieved for the H_{∞} robust controller is 21%, of the one for the compliant controller case
 - Probably, better results can be obtained (future work) for the non-linear compliant control by a more adjusted tuning of the position gains in case a specific requirement for the joint positions is given.

	Stabi	lization	phase:
--	-------	----------	--------

Requirements (ENVISAT case) are comfortably met

Rigidization	H^{∞}	Nonlinear
		Compliant
Angle [deg]	1.618±0.809	2.710±1.169
Angular rate	0.016±0.013	0.078 ± 0.030
[deg/s]		
Initial angular	0.14±0.20(1σ)	(1,1,1,1,1,1,1)
velocity [deg/s]	(Max=3.02)	
Maximum torques	(3.87, 12.23,	(10.94, 12.89,
around the	3.42, 29.80,	19.83, 50.10,
actuation axis (z)	12.28, 8.11,	17.16, 23.32,
for all the 7 joints	28.10)	41,45)
[Nm]		
Simulation time[s]	120 s	120 s

Stabilization		H∞
Angular rate [deg/s]	Х	-0.023
	Y	0.006
	Ζ	0.013

CONCLUSIONS

COMRADE project has currently finalized the Model-in-the-Loop (MIL) level validation phase with successful results and will now enter into the Processor-in-the-Loop (PIL) and HW-in-the-Loop (HIL) validation level.

From MIL-based design/validation phase:

- **Approach/synchronization phase** has considered robust **H**∞ **6DOF** controller over a rigid body with sloshing and flexibility (solar arrays, stored robotic manipulator) effects as main perturbations.
- Reach, capture and rigidization phase has considered a dual approach and implementation (both controllers have demonstrated to be valid options with some better performance results obtained for the first one):
 - Robust H∞ 13DOF controller over a multi-body system composed by the spacecraft platform plus a
 robotic manipulator with 7DOF (and grasping/re-fueling end-effect at the end).
 - A compliance/impedance 13DOF controller over the same multi-body system as for the robust H∞ controller.
- Stabilization/detumbling phase has considered robust H∞ 3DOF attitude controller over the full composite (chaser S/C + target S/C + rigidized robotic manipulator joining both vehicles) with sloshing and flexibility effects as main perturbations.
- Advanced FDA/FTC techniques have been also considered as an additional Failure Detection and Accommodation layer on top of the nominal control design.

THANK YOU

GNVBLOG f ヒ S+
in ふ

