

Clean Space Industrial Days 2018: Pre-Development of Clamping Mechanism for e.Deorbit mission

ESA Contract: 4000121361/17/N

AVS: Cristina Ortega, Iñigo Sard OHB: Markus Thiel, Tim Tattusch ESA: Adam Tvaruzka

24th October 2018

UNITED KINGDOM	SPAIN		SPAIN	FRANCE
Rutherford Appleton Lab OX11 OQX Harwell Oxford Didact	Pol. Ind. Sigma, Xixilion Kalea 2 bajo, Pabellón 10 20870 Elgoibar Gipuzkoa	Thomas Alva Edison 7, Office 15 41092 Sevilla Sevilla	Juan Pedro Dávila García 2 38009 Santa Cruz de Tenerife Tenerife	2 avenue de Thònes 74000 Annecy Auvergne-Rhône-Alpes
T +44 (0) 1235 567095 avs@a-v-s.uk.com	T +34 943 821 841 <mark>avs@a-v-s.es</mark>	T +34 943 821 841 <mark>avs@a-v-s.es</mark>	T +34 943 821 841 <mark>avs@a-v-s.es</mark>	T +33 (0)6 51 32 50 81 france@a-v-s.es

MARKETS

ASTROPHYSICS ACCELERATORS FUSION **SYNCHROTRONS NEUTRONS** LASERS SPACE

QVS SPACE

VISIT OUR NEW WEB PAGE!!

24/10/2018

(ISO 9001

Clean Space Industrial days

Consortium presentation

Leading player in Europe's space business and in particular in the development of scientific payloads & instruments.

Specific experience directly related with this activity highlighted in the table:

Capture, Manipulation, Docking, Servicing and De-orbiting

Concepts and Products for Orbital Robotic Systems

Recent developments: eDeorbit, LAR Gripper, DEOS, VIBANASS, ROKVISS, OLEV

Flight heritage: ROKVISS

24/10/2018

ISO 9001

- Several reference developments coming from different consortiums involved in e.Deorbit phases A & B1 studies:
 - Grippers
 - MDA
 - PIAP
 - OHB
 - Clamping mechanisms
 - MDA
 - SENER
 - ESA issued this **technology development** activity under TRP program with the following **scope**:
 - Design CLM for clamping at Envisat LAR

Test

- Manufacture & test a BB (up to TRL 4)
- Proposal lead by AVS with the collaboration of OHB selected in open competition

Activity coordination

Design & development

Manufacture & Assembly

Internal customer role (system engineering & mission control) Advice & relevant knowledge transfer Clean Space Industrial days

9001

- Requirements 'envelope' from the different previous mission studies
 - Potential differences (e.g. different misalignment ranges, no friction brakes allowed) (And of course, differences with other ADR missions... m_{Envisat}≈7800 kg!)
- Main drivers:
 - 'Grasping' envelope
 - Residual misalignment ±25 mm & ±2.5^o about a Point of Interest (POI)
 - 'Grasping' robotic arm reaction loads
 - 20 N & 80 N.m about all three axes
 - De-orbit loads
 - Steady main resultant main thrust ≈1.7 kN & main torque ≈1.2 kN.m
 - ≈ **1.7** dynamic factor for **transient** loads
 - Stiffness required during de-orbiting
 - 1.5 Hz min. stack 1st eigenfrequency
 - Angular max. deflection 0.3 deg (static) / 0.65 deg (transient)
 - Adaptability to LAR status uncertainties
 - MMOD Dents (ø2mm)
 - LAR thermal range [-140, +140] ^oC → thermal expansión & effect over strength (<50% at 140^oC!)
 - Manufacturing tolerances ISO2768-mK
 - Reflective metalized polymer tapes (up to 0.127mm thickness)
 - Degraded (peeled off, ripped, etc.) reflective tape parts
 - Unknown friction properties

9001

Main drivers

≈150 mm

OVS SPACE Pre-development of CLM for ADR Clamping region early assessment

- According to SoW, stack eigenfrequency to be calculated assuming Envisat & Chaser as rigid bodies.
- However, early simplified FE modal analysis showed that the LAR compliance drives the frequency and that clamping both axially & radially is required to reach the 1.5 Hz minimum stack eigenfrequency
 - Elastic LAR, rigidly constrained at edge (180 mm from the flange)
 - Envisat & Chaser equivalent lumped masses rigidly connected to the LAR (i.e. no CLM compliance contribution)

EN 9100

- Several 'grasping' concepts considered for the concept selection
 - ESA emphasis in preliminary analysis support for the concepts

ISO

9001

CLM Design

• The CLM has to accomplish several functionalities:

ISO 9001

- Dealing with LAR uncertainties I
- CLM grasping kinematics has to cover potential LAR residual misalignments
 - ± 25mm in every axis
 - ± 2.5 deg about every axis

Sample misaligned position 1 Sample misaligned position 2 F 00 00 00

ISO 9001

Dealing with LAR uncertainties II

- LAR status is unknown
 - Geometrical variations due to tolerances & thermal gradients
 - Pivots at the contact part (Clamping Hand) to allow compensation of axial & radial geometry variation
 - Curvature variation will change the lines of contact
 - Smaller effect (<0.4% curvature change) \rightarrow to be compensated by elastic deformation
 - Unknown friction properties
 - Retractable rollers provided to minimise friction contribution during misalignment compensation
 - Potential MMOD damage
 - Discrete contact regions at CH & MF parts
 - Different patterns to be analysed and tested if suitable at the contact regions
 - Sample approaches:
 - 'fakir mattress'
 - 'elastic keyboard'
 - 'soft pad'
 - E.g. PTFE (potential stiffness limitations)

Dealing with RA reactions

2684.05 [N]

Resultant _extremes

- Leverage required to compensate Robotic arm reaction torque & forces
 - Main contribution to resistive efforts in actual configuration

Currently under optimisation!

ISO 9001

- Baseline: custom linear actuator
 - Specific requirements limiting applicability of COTS or other space applications heritage (TVGs)
 - High stiffness required
 - No backlash allowed
 - No friction breaks allowed
 - High unpowered detent torque required
 - Additional friction de-rating (affecting potential non-backdrivability)
 - Detailed ECSS motorisation margin calculation performed
 - Tailored to each actuator
 - Efficencies as lossess (based on ESA AMDC course formulation).
 - Alignment examples (alignment operation & detent):

Grasping/clamping actuation time (requirement: 20s) to be improved as part of the overall optimisation

9001

Actuators

- Grasping & clamping functionalities simulated by MB analysis including
 - Inertial effects
 - Robotic arm reaction torques
 - Retractable roller spring forces
 - Contact (including contact friction)

ISO 9001

CLM FE analysis

- De-orbiting & launch scenarios analysed by means of FE model
 - Nastran SOL 400 used (sequential analysis preload + modal / preload + de-orbiting)
 - Including also thermal range to assess effect on dimensional variation

Stack model - Several configurations (+20º/0º/-20º)

Launch configuration (including HDRM)

-20^o alignment De-orbiting loads VM stress

Launch configuration 1st eigenfrequency: 42 Hz (driven by RTF stiffness)

General performance in line with the requirements Improvement areas identified and under implementation along with overall optimisation

ISO 9001

- Almost a project on its own... Challenging requirements: -
 - Grasping & clamping performance testing: the setup has to be able to provide
 - Controlled constant loads...
 - From misaligned positions...
 - Allowing compensation of the misalignments...
 - ... within budget!
 - De-orbit performance testing:
 - Larger loads (from 80 N.m to \approx 1.7 kN.m)
 - Alignment configurations
 - Test setup design:
 - System based on linear actuators
 - Provisions for different alignment angles
 - 'fixed' after alignment operation for the grasping & clamping tests
 - Position & orientation of the LAR dummy sections by setting adjustable mechanical stops
 - Pre-calculated by analysis for the positions to be tested
 - Equivalent efforts generation at the LAR dummy by setting the forces at the linear actuators
 - Combinations of torque & force can be achieved by adjusting the pairs
 - Potential limitations in simulation inertial loads

Test setup I

- Working principle: force settings at each pair of cylinders generates:
 - Required resultant force in the plane $F_{req} = F_1 F_2$
 - Required torque $M_{req} = F_1 L_1 + F_2 L_2$ orientation depending on the alignment/offset w.r.t POI
 - Multiple possibilities; the following scheme is the preliminary setting:

Test setup II

EN 9100

ISO 9001

- Clamping mechanism pre-development activity for e.Deorbit mission on-going
 - **TRP** activity lead by AVS with the collaboration of OHB
 - Not the typical ADR scenario (≈7800 kg)... but serves as a 'worst case' from the ADR CLM perspective
 - High complexity of the task due to uncertainties regarding LAR status & high structural capacity required
 - Design & MAIT of breadboard up to TRL 4
- Valuable **lessons** to be learned (particularly in difficult to simulate issues as MMOD, etc.) testing, with potential application to other ADR & IOS missions

QVS

BOOSTING SCIENTIFIC KNOWLEDGE

EN 9100

Thank you for your attention!

150 9001

AVS | www.a-v-s.es

+34 943 821841 space@a-v-s.es