BACE & NAVAL ENGINEERING

NOVEL THRUST VECTORING MECHANISM

DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION

ESA CLEAN SPACE INDUSTRIAL DAYS 23 OCTOBER – 25 OCTOBER 2018

Almatech is a space engineering company with established expertise in four main fields

Integrated Systems | Ultra-stable structures | High precision mechanisms | Thermo-optical hardware

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION PROJECT OBJECTIVES

- Almatech was selected for the ESA Clean Space initiative to investigate, and design a Thrust Vector Control (TVC) mechanism as part of the Solid Propellant Autonomous Deorbit System (SPADES).
 (ESA Contract No. 4000112746/14/NL/KML)
- **almatech** is Prime with 2 Italian partners:
- The objective of the activity is to
 - identify vectoring solutions
 - trade-off of vectoring concepts
 - carry out detailed design on chosen concept

TRP UNDER ESA CLEAN SPACE INITIATIVE

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION BASELINE SCENARIO

- Large spacecraft ~ 1500 kg
- **LEO** ~ 800 km altitude
- Rocket motor clustering 4 motors required for deorbit
- Rocket motor thrust level 3 classes, nominal 250 N
- Long burning time ~ 4.75 min, cigarette burning
- Bell shaped nozzle
- High expansion ratio ~ 450

Novel Thrust Vectoring Mechanism Design for Controlled De-Orbiting based on Solid Rocket Motor Propulsion VECTORING REQUIREMENTS

Nominal SRM thrust level	250 N ± 20%.
Thrust deflection target performance	±5°
Thrust deflection rate target performance	±10°/s
	0.05°
In-orbit non-operational lifetime	15 years
	>0.9995 with 60% confidence

almatech

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION MAIN DESIGN DRIVERS

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION

DESIGN EVOLUTION – CONCEPT GENERATION

Novel Thrust Vectoring Mechanism Design for Controlled De-Orbiting based on Solid Rocket Motor Propulsion DESIGN EVOLUTION – INITIAL TRADEOFF CHOSEN CONCEPT

- Linkage mechanism
- Good performance characteristics
- Protected from environment
- No need for high temperature sealing
- Mechanism jamming risks greatly reduced

FLOW VELOCITY PROFILE AT 30 DEG FLAP DEFLECTION MODEL WITH 65 PA AND 6500 PA AMBIENT PRESSURE NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION DESIGN EVOLUTION – MECHANICAL SYSTEM TRADEOFF CONCEPT GENERATION

Flex-Gimbal Mechanism

with conventional geared

stepper motors.

A-frame mechanism

a novel solution that encompasses redundancy and launch lock function.

Wedge mechanism

sized for vectoring loads only, while launch lock development is to be considered.

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION DESIGN EVOLUTION – MECHANICAL SYSTEM CHOSEN CONCEPT

- Gimbaling is achieved with the help of **flexure pivots**.
- Pivots are **directly driven** by two limited angle torque motors.
- The SRM is mounted within an **annular interface ring**.
- This ring is actuated by motor and connected to the middle stage mobile ring by two flexure pivots 180° apart.
- The middle stage ring is connected to an identical interface ring at the spacecraft side through another set of pivots.

FRICTIONLESS FLEX-GIMBAL MECHANISM

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION

FRICTIONLESS FLEX-GIMBAL MECHANISM ADVANTAGES

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION FRICTIONLESS FLEX-GIMBAL MECHANISM PIVOTS (1)

Custom flexure pivots (patent pending) allow for sizing the mechanism for minimal rotational stiffness, lower actuation torque and larger rotational angle capability than commercial options.

Custom flexure pivot advantages and benefits

- Robustness to environmental conditions
- No wear, and lubricant-free
- Predictable life / infinite life
- Predictable, reliable performance
- No contamination
- Integrated movement limiters to ensure flexure protection during assembly and integration.

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION FRICTIONLESS FLEX-GIMBAL MECHANISM PIVOTS (2)

- Optimized blade profile, generous filler radii (to avoid stress concentrations)
- Fully symmetric design that minimizes center shift

In-house optimization for

- Angular range
- Stiffness
- Dimensioning
- Interface (inside/outside/through-hole)
- Material
- Configuration (no. of stages, blades)

Global optimizer implementation with analytical models and integrated FE modeling and verification

almatech

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION FRICTIONLESS FLEX-GIMBAL MECHANISM IN LAUNCH ENVIRONMENT

Integrated launch lock solution

- Pivots sized for operational and handling loads
- Compliant launch lock principle
- COTS actuators

PIVOTS WITH INTEGRATED LAUNCH LOCK

Flexures designed to withstand launch loads

- Pivots sized for launch loads
- Performance 10x better than COTS with similar radial stiffness
- Encumbrance limitation

PIVOTS SIZED TO WITHSTAND LAUNCH LOADS

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION FRICTIONLESS FLEX-GIMBAL MECHANISM UNDER DETAILED DESIGN

Almatech Mechanism concept underwent critical review and is currently under detailed design by SITAEL

NOVEL THRUST VECTORING MECHANISM DESIGN FOR CONTROLLED DE-ORBITING BASED ON SOLID ROCKET MOTOR PROPULSION FRICTIONLESS FLEX-GIMBAL MECHANISM - SUMMARY

Frictionless Flex-Gimbal design combines reliability, scalability, predictably, ease of integration and low-cost features for a thrust vectoring system for end-of-life de-orbiting:

- Frictionless solution
- Long lifetime and high reliability are predicted
- No lubrication is required
- The number of active components is very low
- Direct drive
- Accelerated life testing is not of major concern
- Analysis of motorization behaviour is simple
- Compliant mechanism based launch lock

almatech

Novel Thrust Vectoring Mechanism Design for Controlled De-Orbiting based on Solid Rocket Motor Propulsion A NOVEL VECTORING SOLUTION: DEVELOPMENTS FOR SIMPLE, SUCCESSFUL DEORBIT

Questions?

Almatech

EPFL-Innovation Park Bâtiment D 1015 Lausanne Switzerland

www.almatech.ch

Anett Krammer Aerospace Engineer Tel: +41 21 555 3102 anett.krammer@almatech.ch

Dr Fabrice Rottmeier *Head of Business Development* Tel: +41 21 555 3002 fabrice.rottmeier@almatech.ch