Airbus Defence and Space LEO Platforms compliance to SDM Clean Space Industrial Days

DEFENCE AND SPACE

Daniel BRIOT/Saturnino VAL SERRA 23 October 2018

Agenda

- Introduction
- Driving Space Debris Mitigation Requirements
- End of life strategies for LEO platforms
- Identified technologies to comply with SDM requirements
- Priority technologies for Airbus
- Next steps

Introduction

- Airbus Defence and Space involved in CleanSat initiative since beginning 2015
- Current presentation is the outcome of CleanSat on-going study:
 « Activities to support the development of LEO platforms compliant with Space Debris Mitigation requirements »

Driving Space Debris Mitigation Requirements

- Casualty risk
 - Upon re-entry (controlled or uncontrolled), the risk of causing a casualty on ground shall not exceed 10-4

Re-entry in less than 25 years

- Satellites shall limit their presence in the LEO protected region to 25 years from the end of the mission.

Passivation of energy sources

 At the end of mission, a spacecraft or launch vehicle orbital stage shall permanently deplete or make safe all remaining on-board sources of stored energy in a controlled sequence

Probability of realisation of the disposal manoeuvres

 The probability of successful disposal of a spacecraft or launch vehicle orbital stage shall be at least 0.85/0.90 at the time the disposal manoeuvres are executed (this absolute probability includes de-orbiting and passivation operations).

• Other topics

- Debris release: Spacecraft and launch vehicle orbital stages shall be designed so as not to release space debris into Earth orbit during nominal operations.
- Accidental break-up: the probability of accidental break-up of a spacecraft or launch vehicle orbital stage shall be no greater than 10⁻³ until its end of life.

AIRBUS

Identified technologies to comply with SDM requirements (1/5)

- Five topics have been identified:
 - ➤Technologies relative to design for demise
 - Technologies supporting de-orbiting operations
 - > Technologies to comply with the electrical passivation constraint
 - >Technologies to comply with the fluidic passivation constraint
 - ➤Technologies to ensure end-of-life reliability

Identified technologies to comply with SDM requirements (2/5)

• Technologies relative to design for demise

At unit level

- Demisable propellant tanks
- Demisable COPV (Composite Overwrapped Pressure Vessel) tanks
- Demisable reaction wheels
- Demisable magnetorquers
- Demisable Solar Array Drive Mechanism

At satellite level

- Accommodation of critical units
- Platform opening or early breakup

Identified technologies to comply with SDM requirements (3/5)

- Technologies supporting de-orbiting operations
 - Repressurisation module
 Pressure regulator
 De-orbit engine
 HET (Hall-Effect Thruster) deorbit system
 Arcjet deorbit system

AIRBUS

Identified technologies to comply with SDM requirements (4/5)

• Technologies to comply with the electrical passivation constraint

Power Conditioning and Distribution UnitBattery bypass

• Technologies to comply with the fluidic passivation constraint

Shape Memory Alloy valveMicro-perforatorPyro-valve

Identified technologies to comply with SDM requirements (5/5)

- Technologies to ensure end-of-life reliability
 - Satellite architecture
 Components selection
 Software architecture/FDIR
 Reliability calculation methodology

AIRBUS

Priority technologies for Airbus (1/4)

- Update of the priorities identified during the previous CleanSat phase (Concurrent Engineering phase) which was completed beginning 2017
- Drivers to determine priority technologies:
 - Availability of the needed technologies
 - Amount of concerned platforms
 - Amount of concerned missions

Priority technologies for Airbus (2/4)

• Update w.r.t. CleanSat Concurrent Engineering phase:

Note: demisability of payload not addressed here but of prime importance !

Building block	Priority
Demisable aluminium tanks	High
Fluidic passivation device	High
Repressurisation module	Medium
Demisable wheels	Medium
Demisable Aluminium lined COPV	Medium
Demisable MTQ	Medium
Arcjets (400-500W)	Medium (Long Term)
HET thruster 500W	Medium (Long Term)
Early break-up mechanisms	Medium (Very Long Term)

Priority technologies for Airbus (3/4)

Demisable propellant tank

- Tanks are a systematic PF contributor to the casualty risk area
- Interesting for existing and future platforms using uncontrolled re-entry

Fluidic passivation devices

Interesting for all missions involving an uncontrolled re-entry.

Repressurisation module

Needed for large platforms requiring a controlled re-entry.

Demisable reaction wheels

Interesting for platforms using large wheels and performing an uncontrolled re-entry.

Demisable COPV tanks

 Interesting for platforms based on electric propulsion for which an uncontrolled re-entry or semi-controlled re-entry are foreseen.

Priority technologies for Airbus (4/4)

Demisable magnetorquers

Interesting on platforms applying an uncontrolled re-entry as EOL strategy and using large magnetorquers.

Arcjet de-orbit engine

- Interesting for de-orbiting but also deploying platforms using chemical propulsion (because of the high ISP and provided that the thrust level of the thrusters is sufficient).
- Interest of an ITAR-free solution

HET thruster

Interesting for de-orbiting platforms using electrical propulsion (provided that the thrust level of the thrusters is sufficient).

AIRR

• Early break-up mechanisms

Promising for future applications on platforms implementing uncontrolled re-entry.

Next steps

- Start of task 2 of CleanSat study: « *Platform systems and Building Block requirements definition and refinement* »
 - ≻Objective:
 - Define and iteratively update the necessary requirements for the development of the Building Blocks (identified at the end of Task 1 and integrating funding constraints)
 - Perform analyses and simulations to be able to derive the main system and subsystem level specifications
 - Perform the flow down of requirements from platform to the building block level
 - Analyse the integration of the Building Blocks in the respective platforms (in particular assess the impacts on the avionics architecture)
 - Go through a harmonisation exercise following a concurrent engineering approach where the contractors' proposed requirements will be harmonised with the suppliers and the Agency

Thank you

