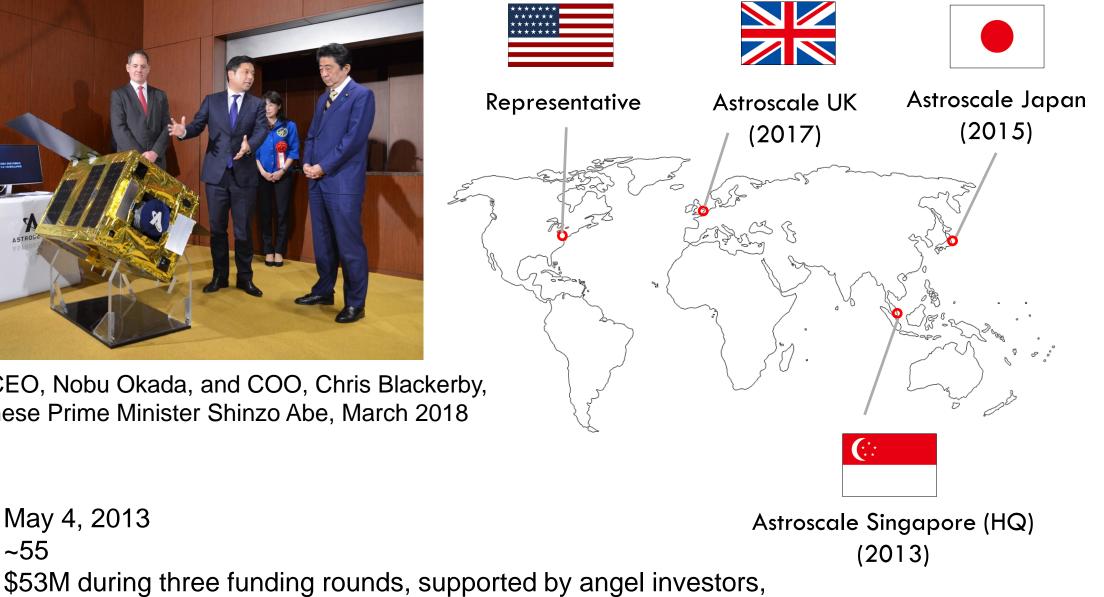
Astroscale's ELSA-d Mission and ESA Support Mechanisms

Author Dr Jason Forshaw, PhD CEng European R&D Manager

Co-authors John Auburn, Chris Blackerby, Nobu Okada

ESA Clean Space, ESTEC, 23 - 25 October 2018

Founder and CEO, Nobu Okada, and COO, Chris Blackerby, meeting Japanese Prime Minister Shinzo Abe, March 2018

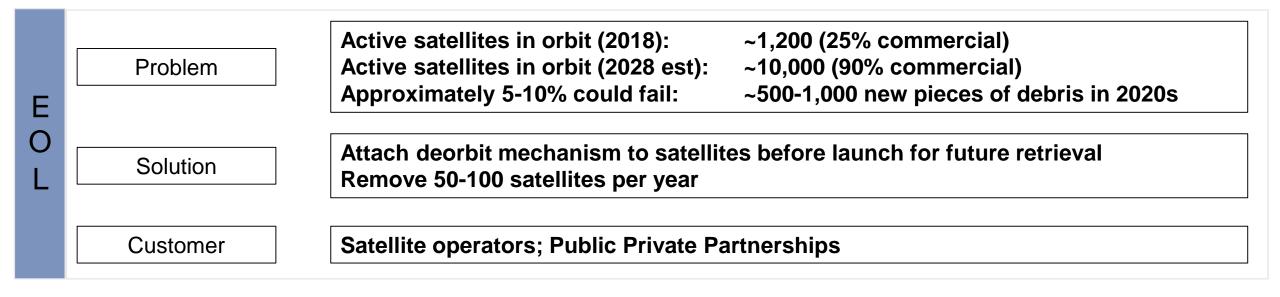

May 4, 2013

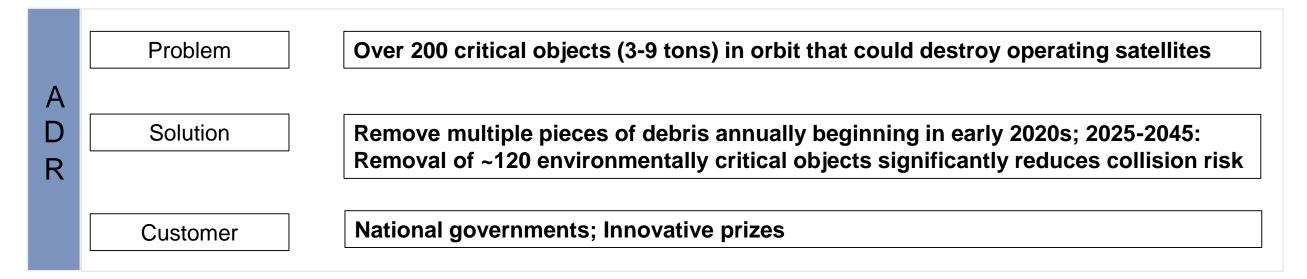
~55

Founded:

Team:

Capital:


VCs, public-private fund, and private companies. Secure long-term spaceflight safety for future generations Mission: End of Life (includes large constellations) Services: Active debris removal



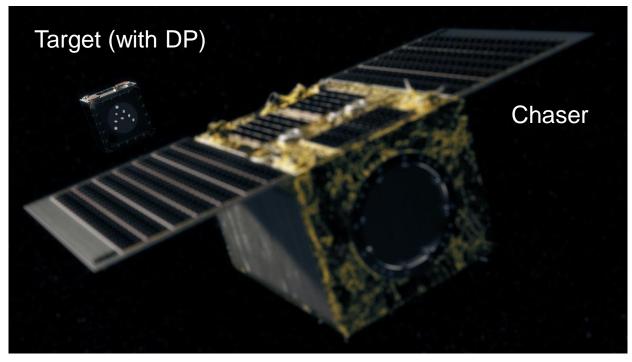
Services	End of Life (EOL) "Don't add any more debris"	Active Debris Removal (ADR) "Remove debris that is already there"	
Potential Customers	Constellations, Private Satellite Operators	Governments, International framework	
Target Objects	 Satellites that have failed in orbit or reached end of operational lifetime 50~500kg 	 Environmentally critical objects 500kg+ Existing debris 	
Rationale	 Business continuity and maximize revenue Adhere to best practices and public demands 	 Demonstrate commitment to orbital sustainability Assure spaceflight safety for all operators 	
	Global Responsibility		
Model	Semi-cooperative approach and capture	Non-cooperative approach and capture	
Astroscale provides	ChaserMission licensingCustomized insuranceGround segment & operationsUniversal DPRetro- reflector	Chaser Mission licensing Customized insurance Ground segment & operations	

By 2021 there will be an estimated \$2.7B^(*) market for debris monitoring and removal

*: Technavio.com: "GLOBAL SPACE DEBRIS MONITORING AND REMOVAL MARKET 2017-2021"

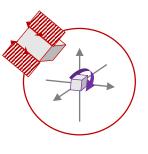
Active discussions with multiple parties to develop doctrine, standards and regulation, critical to the economic exploration of space.

- Private sector Pressure will increase on satellite operators to prepare satellites for retrieval prior to launch.
 - Astroscale is in preliminary discussions with UK insurance providers.
- **Governments** Growing trend to pay for removal of critical objects
 - Astroscale is in early discussions with the UKSA to ensure a licensable chaser design.
- **Public** Increasing public awareness adds to pressure on operators and governments to take action.


ELSA-d – An Overview

Key Mission Details

- Chaser: 160 kg
- Target: 20 kg with docking plate (DP)
- Presently in final design stages with AIT to commence Q1 2019.
 - Range of hardware and software prototypes available with testing underway.
- Launch targeting Q1 2020
 - Signed with Glavkosmos/GK Launch Services, Soyuz 2
 - SSO (500-600 km), LTAN 10.30-11.00.
- Full phases of operations that would be necessary for a full EOL service, including target search, inspection, capture, re-orbit and de-orbit.

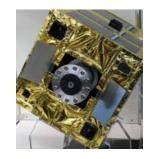


End-to-end rendezvous solution including far and short-range approach

- Two GNC processors (GNC command, data handling)
- Usual complement of attitude sensing e.g. star trackers, attitude control e.g. RWs and position sensing e.g. GPS
- Specialist rendezvous: ranging system, night navigation cameras (wide and short angle), day cameras, range finders, illumination device

Advanced operational capabilities

- Search for targets and approach with absolute to relative navigation hand-over.
- Fly-around inspections of target with operator assessment.


Docking plate to enable semicooperative removal

• Designed with constellation customers in mind.

At-night magnetic capture of nontumbling and tumbling targets

 Capture system is designed to extend and retract and allow multiple captures and releases.

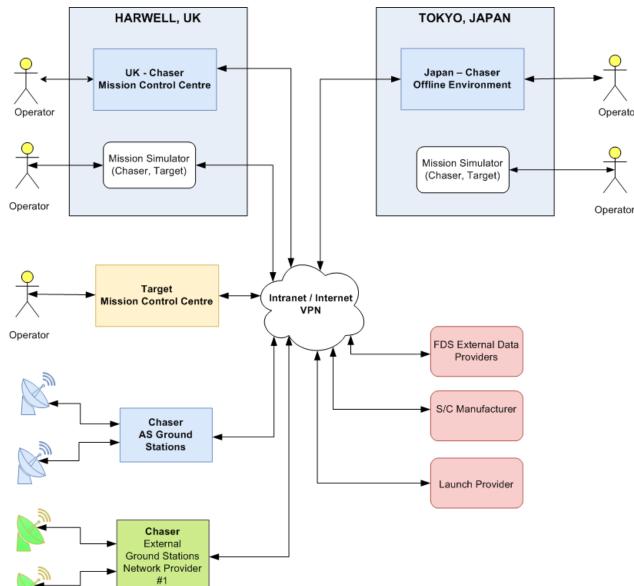
Flight software targeting roughly ECSS Level-3 autonomy

- Event-based autonomous operations
- Execution of on-board operations control procedures

Re-orbit, de-orbit and passivation capabilities

 Green propulsion system with high ISP and compatibility to small launch vehicles

Mission designed with safety evacuations and passively safe trajectories in mind


- Collision avoidance (passive and active abort)
- Movement to evacuation point
- Protected safety ellipse
- Manual experiment abort
- Protected critical functions (including de-orbit)
- Safety critical computing: FDIR and safety tasks
- Architectural redundancy
- High-fidelity ground-based simulation

Ground segment designed specifically for in-orbit servicing (separate slide)

ELSA-d – Ground Segment

- Astroscale awarded a £4M grant from the UK Government to help establish a National In-Orbit Servicing Satellite Control Centre at the Satellite Applications Catapult in Harwell, Oxford.
- Development partially contracted to: Catapult, RHEA, GMV, SCISYS.
- Ground segment is one of the most important considerations in future EOL/ADR missions.
 - Aligning ground stations to link pass segments allows longer periods of continuous operation.
 - Allows for operator oversight into mission with manual safety aborts.
 - Core capabilities based on licensed ESOC tools (used on all ESA missions).
- Capabilities:
 - Mission Control System (MCS)
 - Flight Dynamics System (FDS)
 - Image Processing System (IPS)
 - Mission Planning System (MPS)
 - Automation System (MOIS)
 - Ground Station Control System
 - High Fidelity Simulator

 Astroscale has a strategic agreement with ESA. Both parties have confirmed their mutual strategic interest in pursuing collaboration on the ELSA-d mission by exchanging data and expertise related to mission operations, the environmental monitoring of debris and active debris removal.

Support Mechanism	ELSA-d	Future
ESA could provide		Missions
Engineering consultancy for image processing-based attitude determination algorithms.		\checkmark
Drawn from the expertise gained with the Rosetta mission. Cross-validation of some of the		
blocks of the attitude determination chain with in-house tools.		
Support and advice on its flight-proven ground control software product, primarily through		\checkmark
the review of mission documentation and advice on system validation & testing.		
Review of design related to rendezvous, GNC and operations.		\checkmark
Tracking services to monitor the chaser and target during operations. Laser-based tracking,		\checkmark
interface with JSpOC. Access to attitude estimation from ground capabilities.		
Ongoing mission analysis functions including performing re-entry casualty risk assessment		\checkmark
and examination of debris for CAMs.		
A shared role in support during operations . Based on preliminary discussions with ESA, ESA	TBD	\checkmark
is driving towards a stronger collaboration on operations in ELSA-d and future missions.		
ESA could support with supporting developing using their ESA CDF .		\checkmark
Use of facilities. Includes test facilities at ESTEC and ground control facilities from ESOC.		\checkmark
An ESA cachet or future missions that would demonstrate to other funding entities as a	-	\checkmark
mark of quality that the concept had been assessed by ESA.		

From an EOL perspective:

- Astroscale is engaging large constellation providers to perform an IOD mission.
 - An IOD mission will solidify a partnership and enable technology to be matured.
 - Main driver is minimising cost to Astroscale and cost to the customer.

From an ADR perspective:

- ESA is in the preliminary stages of considering whether there could be services for the removal of ESA-owned assets.
- Astroscale is working with the Japanese Government and Space Agency (JAXA).
 - Astroscale has already completed initial mission design studies with JAXA.
 - Two missions are currently being considered by JAXA in the 2019 to 2025 timeframe to remove JAXA-owned assets.

Growth of Company

- Astroscale Japan is expanded into two buildings in Tokyo and has ~45 employees.
- Astroscale UK has 12 employees, growing to 15 by end of year and 25 by end of 2019.

July 2018, Opening of new Totsuka Ground Station, Yokohama

Astroscale's ELSA-d Mission and ESA Support Mechanisms

Dr Jason Forshaw, PhD CEng European R&D Manager