

Hellenic Evolution to Radiation Data Processing and Modelling of the Environment in Space

IASA: Prof. I.A. Daglis (Project Manager), <u>I. Sandberg</u> (Technical Manager), C. Papadimitriou, A. Tsigkanos, S. Aminalragia-Giamini, G. Provatas, O. Giannakis & C. Katsavrias

ESA/ESTEC contract 4000112863/14/NL/HB Funded by Science Core Technology Programme (CTP)

ESA: P. Jiggens (ESA technical officer)

ESTEC Final Presentation Days: May 2018

Overview

- Team
- Acknowledgments
- HERMES in a slide
- Tasks
- Work performed & Results (selected)

Kick-Off: February 2015 Final Presentation: May 2018 Project closure: - July 2018

HERMES project in a slide

- Collect, clean, evaluate, cross-calibrate a large amount of radiation datasets
- Store data in HERMES ODI database
- Perform numerical calibration for 3 radiation monitors
- Evaluate ESA SEPEM RDS 2.x, Optimize ESA SEPEM VTM performance
- Develop new probabilistic approach for radiation belt modelling (TREPEM)
- Develop a new modelling approach for SEP radiation environment (VESPER)
- Create a unified/modular European Space Radiation Model (ESPREM)
 - Integrate Magnetospheric Shielding Model (MSM)
 - DLR Galactic Cosmic Ray Model
- Develop a modular Radiation Effects Modelling System (ESPREM system)
 - Integrate a series of effect tools

The Tasks

- Task 1: Radiation data processing & calibration
- Task 2: Radiation Belt modelling
- Task 3: Solar Energetic particle modelling
- Task 4: Combined radiation modelling (& effects)
- Task 5: Improvements, Verification, Validation & Update

HERMES db: Open Data Interface

- Data:
 - Some data migrated from SRREMs DB
 - New datasets recreated from scratch to produce well-formed CDF files and correct metadata/units
- HERMES db based on ODI: a Database system for downloading, processing and storing radiation environment data based on MySQL
 - Includes an assortment of tools and utilities to use and extend
 - Server software for ingesting, parsing, downloading data and more
 - Client libraries for getting data natively in most common programming languages
 - Excellent for the HERMES use case!
- UNILIB
 - Fortran UNILIB library with custom MATLAB wrapper for integration with HERMES software
 - NOTE: current versions of ODI can run UNILIB automatically, but it is still a performance bottleneck when ingesting large amounts of historical data.

HERMES datasets

Dataset	Omnidirectional Fluxes	Unilib magnetic coordinates	Quality flags
azur_ei_88_l1_v01	N	N	N
crres_mea_l1_v01	Y	N	N
giovea_merlin_l1_v01	N	N	N
gioveb_srem_hermes_l2_v02	Y	Y	Y
integral_irem_hermes_l2_v02	Y	Y	Y
polar_ceppad_l2_v01	Y	Y	N/A
proba1_srem_hermes_l2_v01	Y	Y	Y
xmm_ermd_l2_v01	Y	Y	Y
demeter_idp_l2_v01	N	N	N
rbspa_mageis_hermes_l2_v01	Y	Y	Y
rbspb_mageis_hermes_l2_v01	Y	Y	Y
rbspa_rept_hermes_l2_v01	Y	Y	Y
rbspb_rept_l3_hermes_l2_v01	Y	Y	Y
probav_ept_l1_v01	N	Y	N

Data Evaluation & Cleaning

- Temporal Coverage
- Spatial Coverage
- Spectra Distributions
- Flux Maps
- Cross-species Contaminations

- Develop routines for determination of data caveats (spikes, saturation, contamination)
- Creation/ingestion of cleaned datasets to ODI (set flags on datasets)

Main contributor: C. Papadimitriou

Evaluation plots: examples

XMM/ERM

Figure 20: Boxplot for Log_10(Electron Flux).

POLAR/CEPPAD

Figure 21: Color Distributions of fluxes for Log_10(Electron Flux).

Evaluation plots: examples

Figure 40: Flux Map for electron channel No 5.

Evaluation plots: examples

XMM/ERM

Cleaning Methods

• Instrument Saturation

The algorithm calculates the absolute difference of neighboring data-points.

D1=|x(i)-x(i+1)| D2=|x(i)-x(i-1)|

Then we determine a data point as instrument saturation if:

D1<d or D2<d

• De-spiking

Spikes are then defined as the points, which simultaneously satisfy the following conditions:

 $|x_i - \mu_i(x_i)| / \sigma_i(x_i) > (2 \ln(2N))^{1/2}$

 $4|d_i - m_i(d_i)| / (3\sigma_i(d_i)) > (2 \ln(2N))^{1/2}$

where d=0.

Data cleaning plots: examples

Calibration of radiation monitors

Calibration set-up

Calibration set-up: Validation

- **STRV-1b/REM:** The calibration measurements at PSI using proton beams were reproduced
- **XMM/ERM:** Derived transfer matrix compared with reported results
- **MERLIN/SURF:** Charging currents obtained with GRAS/Geant4 compared with DICTAT results.

REM: omni-directional responses

- p/e are detected within the 15 channels, the 16th channel can detect heavier particles.
- p-detector's GFs are greater than e-detector's.
- protons can contribute in all 15 channels detections
- electrons are counted within the first 2 channels only

XMM/ERM/HE: directional responses

XMM/ERM: omni-directional responses

Protons are detected in all channels In singles mode protons are mainly detected through the lateral shielding. The peak at channel #7 corresponds to p from forward directions that are stopped in the first diode it encounter.

Electrons are detected in the first 3 channels. In single mode electrons are detected from lateral as well as axial directions. In coincidence mode only electrons from front or back directions are measured.

LE unit

HE unit

The response to protons is similar to the HE single responses, with the peak in the low incident energy shifted to higher energies (>20 MeV) due to the thicker Al shield. The response to electrons below 2 MeV is negligible.

Data unfolding

$$C_i = \sum_{q=p,e} C_{i,q} = \sum_{q=p,e} \left[\int_0^\infty f_q(E) RF_{i,q}(E) dE \right]$$

- Inverse Problem Non-unique solution
- Success in data unfolding depends on:
 - Response Function (Calibration)
 - Quality of measurements
 - Unfolding Method

Goal: develop/update & apply unfolding methods for the counts-to-fluxes calculation

- Singular Value Decomposition Method
- Artificial Neural Networks
- Correlative Unfolding Method

Contributors: <u>S. Aminalragia-Giamini</u> & I. Sandberg

Artificial Neural Network

A number of interconnected collaborating neurons comprises a network which is trained by a learning algorithm using a training set.

- Each node is a neuron
- Neurons are arranged into layers one or more "hidden" layers may be exist
- Hidden layer neurons employ non-linear functions e.g. sigmoids or gaussians
- Weight factors model the strength of the neural synapses

Example: Alphasat/MFS data

MFS provides measurements in 17 channels. The first 10 channels are the P-channels, and the last 7 the so-called E-channels

In collaboration with P. Goncalves, LIPT, Portugal

Example: Alphasat/MFS data

01-Jan-2014 04-Jan-2014 08-Jan-2014 12-Jan-2014 15-Jan-2014 Date

FPDO(E=44.0 MeV) 1×10¹ IREM/SVD unfolded flux MFS/ANN unfolded flux 1×10⁶ str s)] 1×10 $\rm FPDO[1/(cm^2~MeV$ 1×10 1×10⁻ FPDO(E=175.3 MeV) 1×10⁻ IREM/SVD unfolded flux MFS/ANN unfolded flux FPD0[1/(cm² MeV str s)] 1×10^{-3} 1×10 1x10 01-Jan-2014 04-Jan-2014 08-Jan-2014 12-Jan-2014 15-Jan-2014 Date

L. Arruda et al. IEEE TNS 64 (8), 2333, 2017

ESA SREM cross-calibration

SREM SVD cross-calibration

SREM proton flux channel	Nominal unfolding energy	Effective Energy value
#1	12.4	14.50
#2	15.8	17.63
#3	20.0	20.69
#4	25.4	24.62
#5	32.3	29.31
#6	41.1	36.44
#7	52.2	44.33
#8	66.3	56.33
#9	84.3	73.16
#10	107.1	89.00
#11	136.1	116.4
#12	172.9	146.88
#13	219.7	194.9
#14	279.3	320
#15	354.8	361.3

ESA SREM cross-calibration

RBSP/MagEIS (30keV-4 MeV)

Nominal unfolding energy	Scaling Factor
0.65	2.85
0.73	2.05
0.83	1.77
0.93	1.64
1.06	1.47
1.19	1.19
1.35	0.96
1.52	0.79
1.71	0.63
1.93	0.58
2.18	0.57

3 < L* < 6 and dL* < 0.1 d (B / Beq) <0.1 and B / Beq ~ 1 4 <MLT <8 and 16 <MLT <20 dt < 1 h

Roadmap: Radiation Belt specification model

Unilib vs IRBEM

Radiation belt models

AE9/AP9

- Accumulate daily averaged flux values at each grid point
- Calculate median and 95th percentile
- Assume Weibull distribution (electrons) or log-normal distribution (protons)

SRREM

- Construct synthetic time series (aggregating all data)
- Calculate daily averages
- Compute the histogram of the data

TREPEM

- Accumulate daily average values at each grid point
- Calculate 29 quantiles as a means to describe the distribution
- Use inverse transform sampling to generate points according to the derived distribution and compute the histograms from them

TRapped Energetic Particle Environment Model

- Purely Data driven model with a statistical approach to cover the entire distribution of fluxes at each grid point
- Produce fly-in scenarios of fluxes/fluences (average, percentile)
- Additional output: histogram of all flux/fluence values that were encountered by the satellite along its flight path
- Both e⁻ and p⁺ models available
- I/O format compatible with AE9/AP9 (IRENE) models

TREPEM

- RBSP-A MagEIS
- RBSP-B MagEIS
- RBSP-A REPT
- RBSP-B REPT
- PROBA1 SREM
- GIOVEB SREM
- INTEGRAL IREM
- CRRES MEA
- CRRES HEEF
- POLAR CEPPAD
- XMM ERMD

1st Invariant (Energy)

- 10 channels
 (50 keV 10 MeV)
- 2nd Invariant (a_{eq})
 - 27 bins (0 90 degrees)
- 3rd Invariant (L*)
 - 30 bins $(1 \le L^* \le 10)$

For each dataset:

- Assign daily averaged, omni, diff. fluxes to grid
- Save 29 quantiles as a proxy of their distribution

Merge all dataset flux maps to produce final model map

Merging Flux Maps via Inverse Sampling

Method Description

- For each grid point/energy
 - For each dataset
 - Read quantiles from the flux map
 - **Produce** 10,000s points via inversion sampling
 - Join produced points from all datasets
 - Derive new quantiles , mean, stdev, etc
 - Save new statistics to grid point of merged map
- Produce quantile-flux-map

TREPEM

ESTEG

Validation Example – (near) GTO

Validation Example – MEO

Validation Example – HEO

TREPEM

ASA

SRREMs

eesa

6.5

8

4.5

3.5

2.5

9
TREPEM

SRREMs

TREPEM

SRREMs

Virtual Timelines Model (updates)

- Routines of the VTM code were restructured resulting in the decrease of processing time by 3 times!
- VTM code was reconstructed to provide Spectral VTM outputs

Virtual Timeline Model	Spectral Virtual Timeline Model
 For each energy 	 Choose ONE energy/channel E_{VT}
 Impose lower limit 	Impose lower limit
 Get significant events for 	 Find significant events
this energy	 Apply Virtual Timeline, VT
 Apply Virtual Timeline 	 Keep the same VT and get outputs
 Get Output 	for ALL energies BELOW < E _{VT}
 Put all outputs together 	 Receive spectral consistent outputs
 Receive spectral (possible 	for E ≤ E _{VT}
inconsistent) outputs	

RDS 2.0: Cumulative Fluence

RDS 2.0: Cumulative Fluence

RDS 2.0: Cumulative Fluence

RDS 2.0: Cumulative Fluence

RDS 2.0: Cumulative Fluence

RDS 2.0: Cumulative Fluence

RDS 2.0: Cumulative Fluence

RDS 2.0: Cumulative Fluence

Update SPE database & event list

- Evaluate ESA SEPEM Reference Data Set 2.x
 - Test different background schemes
- Evaluate VTM outputs:
 - Use STEREO data
 - Different SPE lists
 - Different database

Evaluation of ESA RDS2.0

- Reconstruct RDS 2.0
- Create iRDS 2.0
- Validate iRDS 2.0

Evaluation of ESA iRDS2.0

Background: RDS2.1s

Background: RDS2.2s

RDS 2.1

RDS 2.21s

RDS 2.22s

SPE spectrum w/o background

SPE characteristics: RDS 2.0

SPE characteristics: RDS 2.1

SPE characteristics: RDS 2.21s

VTM outputs: Cumulative Fluences

RDS 2.1 Cumulative Fluence

STEREO-A/HET data

and a

VTM outputs: STEREO vs RDS

July 2012 peak

STEREO-A:

2012-07-18 05:00:00, 2012-08-04 04:15:00 1.72e+03, 9.62e+02, 3.31e+02, 4.03e+01

RDS:

2012-07-17 15:50:00, 2012-07-26 18:00:00 **5.360**, **1.19**, **4.1e-01**, **3.15-02**

VESPER model

Motivation

- Modeling and production of virtual SEP flux time-series for arbitrary mission durations
- Combine outputs with magnetospheric shielding models and/or radiation effect tools on the time-series level
- Approach

Use the VTM for the modelling of virtual SPE *durations* and *wait-times* (*Jiggens et al. 2012*)

- Rescale "spectrally" flux time-series of existing SPEs in time and flux-intensity.
- Creation of Virtual SPE flux series in a virtual timeline
- Data-driven model as few as possible assumptions and free parameters
- Outputs can be directly used for the derivation of further products
 - Cumulative Fluence/Peak Flux/Worst SEP Fluence distributions
 - Input in Radiation Effects tools
 - Combination with systems modelling other radiation sources (RB, CGR)

VESPER

Introduction of the LF₂ parameter - couples spectral characteristics of individual flux spectra with macroscopic characteristics of Events

$$LF_{2} = \int_{ln(E_{min})}^{ln(E_{max})} ln(E^{2}f(E)) dln(E)$$

- The sum of LF₂ (SLF₂) shows a linear log-log relationship with SPE Duration
- Probabilistic filling of the event space for the creation of the macroscopic characteristics of Virtual Events
- Macroscopic SPE values (Duration-SLF₂) are translated to resscaled flux time-series in time and intensity

VESPER

Each red point represents the flux series of a real SEP event. Each black dot represents a virtual one!

VESPER: Virtual Events

Solar Proton Event, 27-Nov-1989 to 05-Dec-1989

MSM Implementation to VESPER

- MSM (ESHIEM Project)
- msm.for code in FORTRAN
- Input:
 - orbit file
 - *Kp* Index value (constant)
 - Proton Rigidities
- Output:
 - Transmission Factor for each Rigidity value

(this includes rigidity cut-off and the Earth's shadowing effect)

"LookUp Tables" Method

- For a given orbit file
 - Use custom rigidities (for energies of both VESPER & GCR)
 - Run msm for Kp values (0:9) at each orbit point
 - Produce a "cube"
- Each virtual Event is accompanied by the historical Kp time-series of its "seed" event interpolated in time to its virtual Duration
- For each time-stamp of the orbit match the Kp value
- Transmission factors for all energies are found
- Shielding calculation on time-series level

Application of MSM with VESPER - HEO orbit 1 year

ISO-Galactic Cosmic Ray model

- ISO model
- BON models
- DLR/Matthiä model

A ready-to-use galactic cosmic ray model

Daniel Matthiä 😤 🖾, Thomas Berger, Alankrita I. Mrigakshi, Günther Reitz

$$F_{i}(E,t) \equiv \frac{dN}{dAdtd\Omega dE}(E,t) = \Phi_{i}(R(E),t) \frac{A_{i}}{|Z_{i}|} \frac{1}{\beta} = \frac{C_{i}\beta^{\alpha_{i}}}{R(E)^{\gamma_{i}}} \left[\frac{R(E)}{R(E) + (0.37 + 3 \cdot 10^{-4} \cdot W(t)^{1.45})} \right]^{b \cdot W(t) + c} \frac{A_{i}}{|Z_{i}|} \frac{1}{\beta}$$

W(t): b & c coefficients determined: fitted the particle flux density with Cosmic Ray Isotope Spectrometer (CRIS) data on-board the Advanced Composition Explorer (ACE) spacecraft

To extend the temporal validity (and applicability) of the model the Oulu neutron monitor (NM) count rates were selected as a second source of information on the GCR flux intensity.

GCR with MSM

GCR with MSM

European SPace Radiation Environment Model

Motivation

- To create a modular system that combines new and standard radiation models and radiation effects tools
- To merge the radiation effects from different sources

ESPREM system modules

- Models:
 - TREPEM: Trapped electron fluxes
 - VESPER: SEP proton differential fluxes
 - GCR: Galactic Cosmic Rays DLR model
 - AE9/AP9: unused but included; for verification purposes
- Radiation effect tools:
 - MULASSIS: TID, NID, PHS
 - IRONSSIS: TID, NID
 - MCICT: charging
 - SEU: Combination of GEMAT, LET code, IRONSSIS
- Other tools
 - MSM: Magnetospheric shielding
 - SPICE-based: Trajectory generator

TREPEM

- 0.04 MeV 10 MeV
 (less data available for E > 5 MeV)
- (E, aeq, L*) Maps

(L* calc too slow)

- Percentile Maps

 <u>Model Quantiles</u> [(0:0.01:0.04), (0.05:0.05:0.95), (0.96:0.01:1)]
- Average Maps
- St.Dev Maps
- Outputs
 - Mean
 - Percentiles (any)
 - Histogram
 - Diff & Int Fluxes

ESPREM

<u>RB DATASETS</u>

RBSP-A/MagEIS RBSP-B/MagEIS RBSP-A/REPT RBSP-B/REPT GIOVE-B/SREM INTEGRAL/IREM PROBA1/SREM CRRES/MEA CRRES/HEEF POLAR/CEPPAD XMM/ERMD

SPE DATASETS

ESA SEPEM RDS (x-calibrated GOES)

VESPER & MSM

- 5 MeV 200 MeV
- Event DB driven
- Kp driven (for MSM)
- Solar Active/Quiet/Mixed Conditions
- Multiple-Scenario Runs
- Outputs
 - Percentiles of Average Scenario Diff. Flux

GCR & MSM

- 12.58 MeV 100 GeV
- W driven
- Kp driven (for MSM)
- Multiple-Scenario Runs
- Outputs
 - Percentiles of Average Scenario
 Diff. Flux

ESPREM: model description

Example: combination of Dose @GEO from AE9 & VTM

ESPREM system overview

- A suite of models and (radiation effects & more) tools
- Tools are encapsulated in wrappers to homogenize interfaces
- Client server model
 - System runs on the cloud (or locally in a VM)
 - Clients can perform queries over **RPC with JSON data**
- Client library (python3) provides plotting, parsing utilities
- Depending on the user query the system:
 - Runs the requested module and returns all results serialized in JSON
 - Runs a series of modules in a pipeline transforming intermediate data as required and returns all intermediate data

ESPREM system architecture

ESPREM system use cases

- Suite of models and tools with convenient and consistent APIs (Application Program Interfaces)
- Designed as a backend to the ESPREM model combining the models/effects
 - ESPREM model is the frontend, using the ESPREM system as backend
 - The combination model is a special client which uses probability outputs
 - Can trigger multiple runs of effects tools for flux quantiles
- Modular & loosely coupled: modules can be queried individually, new modules can be easily added
 - Can be used **standalone** as python libraries
 - **Easy to extend** with new modules: guide is included in docs.
 - Easy to test/document new modules with existing test/docs framework.

ESPREM system: small conveniences

- Automated unit/e2e tests and reporting with Pytest/Sphinx
 - Reference test cases checked with known-good tools (e.g. SPENVIS) where possible
- Auto-generated documentation with Sphinx from source code, examples and tutorials
- Automated construction of Virtual Machine with fully installed software with Vagrant
- User step-by-step tutorials in Ipython notebooks
- Docs on extending the system
- Full transparency with intermediate data to accommodate validation

Query example from Ipython cont.

10⁵

Differential proton spectra

10¹

10²

10³

Energy MeV

 10^{4}

Example run of the ESPREM System

Output Files

MULASSIS DOSE ANALYSIS for TREPEM outputs

'geant4-09-06-patch-02 (17-May-2013)'

'Layer', , 1,'Layer number''Thickness', 'cm', 1,'Thickness of layer''Density', 'g/cm3', 1,'Density of layer''Dose','rad', 1,'Dose/energy deposition''Error','rad', 1,'Error dose/energy deposition'

1, 1.0000e-01, 2.6990e+00, 7.2124e+02, 1.5845e+01

2, 1.0000e-01, 1.0000e-25, 1.5728e+01, 9.1249e+00

Validation Against SPENVIS

RBSP-type Orbit

Cesa

Layers

Acknowledgments

- Daniel Heynderickx (DH Consultancy)
 - Technical consultancy on ODI
 - Integration of radiation effect tools into ESPREM system
 - Independent validation of ESPREM system
 - Support on SPICE orbit tool
- Fan Lee (RADMOD, UK)
 - MSM tool (ESHIEM project)
- D. Matthiae, T. Berger, R. Günther (DLR)
 - DLR ISO GCR model s/w
- P. O'Brien (Aerospace, US)
 - Support on AE9/AP9 model & effect tools
- Patrícia Gonçalves (LIP)
 - Alphasat/MFS data & response functions
- N. Messios et al (BIRA, SPENVIS team)

HERMES: conferences & papers

Presentations in Conferences

Results of ESA HERMES project have been presented in a series of European and US workshops and conferences.

- The European Space Radiation Environment Model, C. Papadimitriou, I. Sandberg, S. Aminalragia-Giamini, A. Tsigkanos, O. Giannakis, C. Katsavrias, P. Jiggens and I.A. Daglis, COSPAR 2018,(Oral)
- New approaches in SEP description and modelling, I. Sandberg, S.A. Giamini, C. Papadimitriou, I.A. Daglis and P. Jiggens, 13th European Space Weather Week, Oostende, Belgium, November 2016. (Oral)
- The first Iteration of the Trapped Energetic Particle Environment Model, C. Papadimitriou, I. Sandberg, Ch. Katsavrias, A. Tsigkanos, O. Giannakis, I.A. Daglis and P. Jiggens;, Radiation Modelling and Data Analysis Workshop, October 5–7, 2016, Sykia, Greece. (Oral)
- Pre-processing methods for energetic particle measurements, C. Papadimitriou et al 12th European Space Weather Week, Oostende, Belgium, 2015. (Poster)
- Data Unfolding using Neural Networks, C. Papadimitriou et al, 12th European Space Weather Week, Oostende, Belgium, 2015. (Poster)
- The Virtual Time-Series Solar Proton Event Model, Aminalragia-Giamini, I. Sandberg, C. Papadimitriou et al, Space Weather Workshop, Broomfield, USA, 2017. (Poster)

Peer Reviewed

The following publications have been resulted entirely or partially from the work performed within ESA HERMES project.

- Validation of the effect of cross-calibrated GOES solar proton effective energies on derived integral fluxes by comparison with STEREO observations, J. V. Rodriguez, I. Sandberg, et al, Space Weather, 15, doi:10.1002/2016SW001533 (2017).
- SEP Protons in GEO measured with the ESA MultiFunctional Spectrometer, L. Arruda, P. Gonçalves, I. Sandberg, S. Aminalragia-Giamini, I.A. Daglis et al. DOI 10.1109/TNS.2017.2714461, IEEE TNS (2017).
- The virtual enhancements solar proton event radiation (VESPER) model, S. Aminalragia-Giamini, I. Sandberg, C. Papadimitriou, I.A. Daglis, P. Jiggens, J. Space Weather Space Clim. 2018, 8, A06, <u>https://doi.org/10.1051/swsc/2017040</u>

HERMES Workshop

SPACE RADIATION MODELLING AND DATA ANALYSIS WORKSHOP 2016

SYKIA, PELOPONNESE, GREECE

5-7 OCTOBER 2016

SCIENTIFIC PROGRAMME

SCIENTIFIC ORGANIZING COMMITTEE

Piers Jiggens, European Space Agency, The Netherlands Ioannis A. Daglis, University of Athens, Greece Paul O'Brien, Aerospace Corporation, USA Ingmar Sandberg, IASA, Greece

LOCAL ORGANIZING COMMITTEE

The local organisation is being undertaken by the Institute for Accelerating Systems & Applications (IASA), Greece

Ingmar Sandberg, Ioannis A. Daglis, Sigiava A. Giamini, Christos Katsavrias, Constantinos Papadimitriou

- 22 participants
- EU & US participants

Thank you!

Effect Combination: Inverse-Rank Pairwise Combinations

Effect Combination: Inverse-Rank Pairwise Combinations

Effect Combination: Inverse-Rank Pairwise Combinations

