
ESA UNCLASSIFIED - For Official Use

Tools for fast simulation of very
complex System-on-Chip

Sven Alexander Horsinka

TU Braunschweig

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 2

Research Motivation

• Simulation of hardware architectures is a crucial tool in hardware design, validation and
increasingly embedded software development

• Customized architectures prohibit the use of general simulators more and more

 Virtual prototype platforms address this issue by enabling fine grained customization

Executable prototypes are constructed from IP libraries

Standardization as IEEE1666 (SystemC) lead to high interoperability and design
re-use

 ESA’s SoCRocket is a virtual platform applying standardized coding styles and techniques
for embedded SoC design exploration

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 3

Research Motivation

SoCRocket Virtual Platform:

• Targeted at design space exploration

• Enables flexible hardware software co-design

• TLM2.0 library of Cobham Gaisler GRLib IP

• IP developed by TU Braunschweig and
Terma GmbH

• Ongoing research platform at
TU Braunschweig

http://www.esa.int/spaceinimages/Images/2012/12/SoCRocket_SystemC_IP-Cores

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 4

Research Motivation

This research activity utilized and extended the SoCRocket virtual platform
towards:

• Exploration of complex many-core SoC
• Allowing the integration of previously discrete systems into a single design

• Mixed criticality and virtualization features guarantee suitable separation and
seamless software porting

• Research into a parallel simulation model for SoCRocket
• Single threaded simulation delivers insufficient performance for high core counts

• A multi-process simulation model on top of SoCRocket was developed and
evaluated

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 5

Outline

 Intro Transaction-level modelling

SystemC/TLM2.0 and coding styles

Translating coding styles to packed based communication

 Mixed-criticality many-core architecture

 SoCRocket Many-core evaluation

 Distributed simulation

 Summary & Conclusion

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 6

Intro Transaction-Level Modelling

IEEE 1666–2005:

 Initial standardization of the SystemC language, defining class libraries for
system and hardware design

 TLM 1.0 presented first techniques to defined hardware modeling on the
transaction level

IEEE 1666-2011:

 TLM Version 2.0 presents more refined approach to model hardware systems
towards different accuracy and simulation performance targets

 Included coding styles steer developers and clarify how to treat timing on the
previously weakly defined transaction level.

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 7

Intro Transaction-Level Modelling

 Goals of the Loosely-Timed and Approximately-Timed coding styles:

 Accuracy vs. simulation performance tradeoffs (in absence of a clock signal)

 Loosely-Timed coding

 Increased simulation performance by reducing synchronization frequency

 Bus access represented by a single blocking function call

 Additional optimization: temporal decoupling and direct memory interface

 Approximately-Timed coding

 Dividing bus accesses into multiple phases

 Typically implemented as two threads communicating via non-blocking function calls

 Allows accurate reproduction of pipelined/out-of-order bus protocols

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 8

Intro Transaction-Level Modelling

 A shared bus defines a singular point of synchronization between competing actors

 Increasing the resolution of access behavior yields higher overall accuracy for bus protocols
utilizing outstanding requests, out-of-order responses

 This does not typically hold true for predominantly packet-based network protocols

At a certain point in the protocol hierarchy, neighboring routers exchange data in
fixed sized chunks (often called Flow Control Unit, Flit)

Increasing the synchronization frequency on a point-to-point link does not yield a
accuracy benefit

Router
n

unidirectional point-to-point links

Flit

Flit

Router
n+1

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 9

Translation of coding styles for network communication

 Trade-off between accuracy and simulation performance shifts from
individual links to a set of independent point to point links

• All Routers need to stay in sync to reproduce
contention caused delays

• Correct Flit arbitration is required

• Local hot spots can dramatically increase the
communication delay of affected data streams while
decreasing the delay for unaffected ones

• Timing error can accumulate very fast if contention is
not reproduced accurately

R0 R1 R2

R3 R4 R5

R6 R7 R8

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 10

Translation of coding styles for network communication

The deliberation between accurate and fast simulation can be made based on contention
awareness

Contention aware:

 High accuracy down to Flit arbitration

 Increased modelling and simulation effort:

 Router model needs to explicitly model flow-control

 Synchronization interval is defined by Flit-Router traversal time

Contention unaware:

 No synchronization between competing data streams

 Using static or estimated hop delay

 Allows use of temporal decoupling and direct memory interfacing

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 11

Translation of coding styles for network communication

• Synchronization with the simulator kernel
after every hop

• Allows the correct annotation of contention
based delays

• Complete network traversal is performed in a
single simulation step

• Synchronization to the global simulation time is
performed by the actor if needed

Contention aware Contention unaware

forward
flit

notify
arbiter

Sim time

Sim time +
NoC dealy

Initiator Router 0 Router 1 Target Initiator Router 0 Router 1 Target

sync if
needed

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 12

Outline

 Intro Transaction-level modelling

 Mixed-criticality many-core architecture

Separation

Example architecture

Reference NoC-router and NoC-interface

 Transaction-level NoC implementation

 SoCRocket Many-core evaluation

 Distributed simulation

 Summary

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 13

Explored mixed-criticality architecture

Need for Many-Core architectures
• Feature size shrinks do not allow the previously increases in operating frequency

• Limits of shared bus architectures prohibit higher core counts beyond “multi-core”

Continuing the trend of SoCs, by integrating more and more compute components into a single
design new communication architecture is required

 Scalable on-chip networks are becoming increasingly popular

However, designers need to prevent erroneous interference between tasks performed on a
single chip:

 Mixed-criticality support enable side-by-side execution of versatile tasks

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 14

Explored mixed-criticality architecture

• Most mixed criticality systems differentiate applications into:

• Highly critical: require strict performance and throughput guarantees

• Low criticality: interference is not desirable but not operation critical

• How can this be achieved?

 Separation!

 Spatial separation: Access to critical memory/resources is only allowed
by critical tasks

 Temporal separation: Low criticality tasks must not impact the
throughput/performance of a critical tasks

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 15

Explored mixed-criticality architecture

This research is based on a reference architecture
developed at TU Braunschweig called IDAMC

• Tasks are mapped to individual subsystems (tiles)

• Shared resources are accessed via an on-chip network

• Network resources are used by high and low
criticality tasks and implement spatial and temporal
separation features

System
Controller

N
6

N
3

N
5

N
4

N
8

N
1

N
7

N
0

N
2

S

W

N

R

Tile

TileTile

E

Tile
NI NI

NINI

Virtual Platform
2D mesh of nodes

Node
Router connected to

Tiles

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 16

Explored mixed-criticality architecture

Network Interface:
• Interface is local bus master and slave as well as interrupt source and target

• Virtualization: local address ranges and interrupt lines can be mapped to remote resources

• Monitoring: Erroneous outbound transactions are detected and invalidated before entering
the NoC

• Tile control: Monitoring events may lead to tile recovery techniques

Network router:

• 2D mesh network with up to four tile uplinks per router

• Flit based wormhole switching

• Credit based flow control

• QoS scheme handling data streams of mixed criticality

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 17

Outline

 Intro Transaction-level modelling

 Mixed-criticality many-core architecture

 SoCRocket Many-core evaluation

SoCRocket many-core architecture

Simulation performance evaluation

 Distributed simulation

 Summary & Conclusion

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 18

SoCRocket many-core architecture

 Accuracy:

The contention-aware router model was validated against the RTL model

Traces of packet injection and ejection times as well as arrival order were captured
(RTL and TLM) for different traffic patterns and router configurations

 Performance measurements:

Standalone NoC with synthetic traffic compared to RTL

Simulation of video processing hardware cores distributed in the NoC
(low computation, high communication)

Running software benchmarks in each tile using a shared memory tile
(high computation, low communication)

TS14
TS15

Slide 18

TS14 Welche Bedeutung hat die Mixed-Criticality in diesem Zusammenhang. Meinst du die Contention Awareness eine Vorraussetzung zur
Modellierung derartiger Systeme ist. Wenn ja, dann solltest du das schon am Anfang herausstellen (in der Problembeschreibung /
Motivation).
Thomas Schuster, 04/12/2017

TS15 Es würde sich dann auch Anbieten 'Metriken' zur Messung von Genauigkeit und Verlässlichkeit derartiger Systeme vorzustellen. Was ist
wichtig? Latenz, Durchsatz, Granularität der Daten (Resolution)
Thomas Schuster, 04/12/2017

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 19

TLM2.0 NoC Router implementation - evaluation

Comparison RTL vs. TLM NoC Router

 Fixed 8x8 network dimensions with 64 traffic generators/receivers (custom cores)

 All-to-all traffic pattern

Each generator injects a packets of 5 flits sequentially addressed to all other
nodes (injection rate = 1)

10 – 100 iterations cumulating in 33.65 MB of data moved

Very high network load to get high delays for the contention aware model

 Measurements

Accuracy in clock cycles (minimum flit-router traversal takes 4 clk cycles)

Performance in seconds execution time on the host-system

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 20

TLM2.0 NoC Router implementation - evaluation

• >160x speedup between RTL and the

contention-aware TL Model

• 1400x - 2000x speedup between RTL

and the contention-unaware TL Model

• Static flit latency in the contention-

unaware TL Model

• Individual latency error always below 3

clock cycles (contention-aware model)

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 21

SoCRocket many-core architecture - Evaluation

 Video processing on shared memory without an ISS

Base Virtual Platform

AHBCTRL

Mgmt.
controller

MCTRL

S
D

R
A
M

PR
O

M

Video
core 3

Video
core 4

Video
core 5

Video
core 1

Video
core 2

R0 R1 R2

R3 R4 R5

R6 R7 R8

Video
core 4

Video
Memory

Video
core 1

Video
core 3

Video
core 5

Video
core 2

Video
core 1

Video
core 3

Video
core 5

Tiled NoC Virtual Platform

Video
Memory

 Collection of video accelerators working on a shared memory

 Video Memory Tile is reached via address translation

Mgmt.
controller

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 22

SoCRocket many-core architecture - Evaluation

0 200 400 600 800 1000 1200 1400 1600

baseline

baseline-dmi

noc-no-con

noc-no-con-dmi

noc-con

Bus NoC Video cores Mem other

execution time in seconds

0 20 40 60 80 100 120 140 160

baseline

baseline-dmi

noc-no-con

noc-no-con-dmi

Bus NoC Video cores Mem other

Overall simulation timing error ~23% between coding styles

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 23

SoCRocket many-core architecture - Evaluation

Software workload

 Each node executes software (FFT) using a shared memory tile

R0 R1 R2

R3 R4 R5

R6 R7 R8

R0 R1 R2

R3 R4 R5

R6 R7 R8

LEON
ISS

LEON
ISS

LEON
ISS

Shared
Memory

LEON
ISS

LEON
ISS

LEON
ISS

LEON
ISS

LEON
ISS

System
Controller

 Seven worker tiles are configured by the system

controller

 Each worker reads samples from a shared

memory, computes the FFT, and writes back the

results to the shared memory

 High software workload with moderate communication overhead

TS25
TS26
TS27

Slide 23

TS25 Hier beginnt ein neues Experiment.
Thomas Schuster, 04/12/2017

TS26 Du könntest die Headline um eine Unterschrift erweitern.
Performance eval ...
Experiment 2: Real-world workload
Thomas Schuster, 04/12/2017

TS27 für den Abschnitt zuvor:
Experiment 1: Synthetic workload (???)
Thomas Schuster, 04/12/2017

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 24

SoCRocket many-core architecture - Evaluation

Real-world workload

 Software FFT on shared memory

0 20 40 60 80 100 120 140 160

noc-no-con-dmi

noc-no-con

noc-con

ISS Bus NoC Mem Other

 Simulation performance is defined by the ISS

 Only a overall 18% slowdown when modeling network contention accurately

 Overall simulation timing error ~12% between coding styles

execution time in seconds

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 25

Outline

 Intro Transaction-level modelling

 Mixed-criticality many-core architecture

 SoCRocket Many-core evaluation

 Distributed simulation

 Background and research focus

 Parallel SoCRocket simulation model

 Performance and accuracy evaluation

 Summary & Conclusion

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 26

Distributed simulation

Distributed discrete-event simulation has been a topic of interest for several decades with the
classification into:

• Conservative synchronization:

• Avoidance of situations leading to possible causality errors

• Synchronization frequency defined by designs behavior

• Optimistic synchronization:

• Detection and recovery of causality errors

• Reduced synchronization frequency at the price of state save and recovery overhead

 Both classifications avoid causality error

 Not feasible for SystemC/TLM2.0 parallel simulation:

Conservative approach requires a too high synchronization frequency

SystemC simulation state too complex for an frequent duplication and rollbacks

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 27

Distributed simulation

This research targeted to following specialization:

• Target environment: Modern workstation CPUs of eight cores or more

• Parallel exaction on a single system allows low latency communication between
simulation peers compared to network connected clusters.

• Target partitioning: Simulation model partitioning on low frequency communication links
reduces inter process communication overhead

• Separation based on tile boundaries keeps local bus communication within a single
process

• Only inter tile communication has to be passed between simulation processes

• Handling packed based communication between tiles observes reduced complexity
compared to multi phase bus communication

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 28

Distributed simulation

Low IPC overhead on a single machine allows separate handling of communication and
synchronization:

• Overall time progression is managed by a central manager with knowledge of the whole
simulation

• Communication between simulation peers can be passed directly between simulation peers
without explicit synchronization on arrival

Inter process communication for the synchronization as well as communication was
implemented using the Boost IPC library

• Memory mapped massage queues transport serialized data structures between simulation
nodes

RTile NI IPC

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 29

Distributed simulation

Synchronization manager:

• Nodes request simulation time by
entering the sync manager barrier

• Sync manager sends sync tokens to
the nodes after all entered the barrier

• Nodes run asynchronously until the
granted simulation time is reached

Simulation
Node 0

Global Sync
Manager

Simulation
Node 1

Barrier

Sim
Token

Sim
Token

process 0

process 1 process 2

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 30

Distributed simulation
Simulation node structure

Tile Logic (SoCRocket)

Boost IPC
Bridge

NoC interface

transaction handling

Serialize and
push to

remote Msg
queue

De-serialize
(SC_THREAD)

Inbound Msg
queue

to remote
tile/NoC process

from remote
tile/NoC process

data path

Sync logic

Sim Token
Msg queue

simulation
start/stop

loop

to global sync
manager barrier

simulation quantum
received from the

sync manager

sy
nc

 c
tr

l

tlm target socket

tlm initiator socket

boost message queue

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 31

Distributed Simulation

RTile NI IPC

RTile NI IPC

R TileNIIPC

R TileNIIPC

NoC process

Explicit NoC

• All communication is passed to a
separate NoC process

• Transparent to the single process
simulation (software)

TileNIIPC

TileNIIPC

Tile NI IPC

Tile NI IPC

Direct mode

• Communication is directly passed
between simulation peers

• Reducing the overhead to
serialize/deserialize
communication twice

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 32

Distributed Simulation – Test Scenario

• 3 dimensional mesh with 8 worker nodes and one system controller

• Each worker performs iterations of remote tile communication and local computation

• Communication is modeled as data access to the
system controller memory space

• Different communication to local computation ratios
are investigated (between 1000-1 and 1-1000)

• Simulation performance and timing accuracy is compared
to the same configuration in a sequential simulation model

• All simulations were run on a 8 core 16 thread CPU with
32 GB of RAM

R0 R1 R2

R3 R4 R5

R6 R7 R8

LEON
ISS

System
Controller

LEON
ISS

LEON
ISS

LEON
ISS

LEON
ISS

LEON
ISS

LEON
ISS

LEON
ISS

LEON
ISS

LEON
ISS

LEON
ISS

LEON
ISS

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 33

Distributed Simulation – Direct Mode

• Desirable speed-up achieved above ~1000 clock
cycles

• Low communication scenario reaches up to ~8x
• High communication load only achieves ~3x

• Poor accuracy for high communication load (up
to 287% timing error)

• Low to medium communication load scenarios
only observe higher timing errors for long
periods of async execution (up to 47%)

simulation performance timing accuracy

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 34

Distributed Simulation – Direct Mode

What causes the high timing error?

• Communication requests may only be
acted upon after the next
synchronization

• Frequent request response cycles
between processes may cause significant
timing errors

• Communication is directly bound to
individual simulation time progression

P1

P2

sync

active simulation

sync

re
sp re
q

sync

re
sp re
q

re
q

Adding an explicit communication process will act
as a buffer between simulation processes

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 35

Distributed Simulation – Explicit NoC

simulation performance timing accuracy

• Ideal speed-up achieved between 1000 and
5000 clock cycles

• Low communication scenario reaches up to
~5.7x

• High communication load only achieves ~4x

• Significantly improved accuracy for high
communication load (up to 45% timing error)

• Slight improvements for low to medium
communication load (up to 7%)

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 36

Summary

• The SoCRocket library was extended by additional IP to investigate many-core
architectures executing mixed criticality tasks

• A coding style was defined and analyzed for the on-chip network
communication on the transaction-level

• Different many-core configurations were implemented, analyzed and optimized
with regards to execution characteristics

• Based on this knowledge, a parallel simulation model was implemented to
further optimize the simulation performance

• Using different operational modes, high performance or high accuracy can be
achieved

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 37

Thank you for your attention

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 38

Outline

 Intro Transaction-level modelling

 Mixed-criticality many-core architecture

 Transaction-level NoC implementation

TLM NoC router

Payload representation

Standalone evaluation

 SoCRocket Many-core evaluation

 Distributed simulation

 Summary & Conclusion

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 39

TLM2.0 NoC Router implementation

Generic router structure for contention based coding styles
Contention aware router design

nb_transport_fw input_bufferinput_bufferinput_bufferinput buffer

flow control

arbiter

flits

credits

switch fabric

vc controller

b_transport routing
flits

SC_THREAD multi_passthrough_target_socket multi_passthrough_initiator_socke

t

Contention un-aware router design

switch fabric

DMI

ESA UNCLASSIFIED - For Official Use ESA | 09/05/2018 | Slide 40

TLM2.0 NoC Router implementation
TLM Flit data representation (for both coding styles)

 Standard TLM2.0 generic payload objects are used for compatibility and maintainability reasons

 Not applying generic payload fields are ignored

 Proposed options to model network specific transaction data fields:

generic
payload

Extensions Serialization

data_ptr

extention

NoC Fields
routing, virtual

channel, priority,
…

data field of
source

transaction

 NoC protocol specifics are separated from
data

 Data field stays unchanged (no copy)

 Payload extension is non-ignorable

generic
payload

data_ptr

NoC Fields
routing, virtual

channel, priority,
…

payload data
field

 NoC protocol fields and data are serialized
into a new bit-true data field

 True to the original protocol, simpler
interfacing to RTL transactor

 Higher simulation overhead to serialize/de-
serialize NoC Fields

