
Quality Assurance in Model-Driven Software Engineering for Spacecraft

Kilian Hoeflinger, Jan Sommer, Ayush Nepal, Olaf Maibaum, Daniel Lüdtke
DLR - Simulation and Software Technology
Contact: kilian.hoeflinger@dlr.de

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 1

Motivation
• Improve S/W PA for model-driven development by

measuring model quality with model metrics
• Early evaluation/detection of:

• Flaws in specification
• Functional requirements
• Non-functional requirements (Maintainability,

Reusability etc.)

Outline of the PATAS study
• One year study
• Development of product quality model with software and

model metrics
• Implementation of an end-to-end model-driven software

engineering lifecycle demonstrator, based on TASTE
• Evaluation of the demonstrator with mission-critical parts

of the onboard S/W of a satellite mission, being modelled
and subsequently coded

• Improvement of model-driven S/W PA at ESA

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 2

Workflow of PATAS study

PaTaS - Product Assurance with TASTE Study

Credit for GIFs: openclipart.org

You save…

Content

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 3

Quality Model

Model Metrics

Demonstrator design and implementation

Conclusions

Next Stop: Model Metricator Tool

Credit for GIFs: openclipart.org

Developed Quality Model

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 4

Quality model for model-based software development

Quality model format for recommendation for ECSS-Q-HB-80C

• Quality Model is based on existing one of ECSS-Q-HB-80C
• Splitting the product sub-characteristic in a model and

software metric
• Graphical and table format representations

Mapping Formula within the Quality Model

• Mapping formulae for model to S/W metrics
• Complementary – Combination of model and S/W metric to derive a quality verdict
• Independent – Model and S/W metric are alone standing
• Further formulae possible
• Nested - A software metric is nested in a model metric, determining and subsequent handling of

special points of interest

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 5

Model Metrics
Overview

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 6

ID Model Metric Name Applicable Sub-characteristic

MM-01 Adherence to Modelling Conventions Modularity, Completeness, Self-descriptiveness,
Conciseness, Balance, Correctness

MM-02 Interaction Diagram Coverage Completeness, Balance

MM-03 Model Type Instance Weight Complexity, Balance

MM-04 Model Coupling Modularity, Complexity, Balance

MM-05 Model Type Instances per Use Case Modularity, Complexity, Balance, Conciseness

MM-06 Use Cases per Model Type Instance Modularity, Complexity, Balance, Conciseness

MM-07 Lines of model code Complexity, Balance, Self-descriptiveness

MM-08 Model comment frequency Complexity, Balance, Self-descriptiveness

MM-09 Module Fan-in / Fan-out Modularity, Balance

MM-10 Requirements Specification Coverage Completeness, Correctness
PaTaS model metrics overview

Model metrics assessment results (1/3)

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 7

Model Type Instance Weight
Accumulation of all model type instances, “owned” by a model
type instance, considering a model type specific weight factor,
determined by any indicator of complexity

Results
• Large data interfaces are visible, represents good a-priori

evaluation possibility for complexity
• Interface changes are rare and on the highest level not

visible
• Shows creation of service 152 of ONS to ralex service 8 of

ONS

0
50

100
150
200
250
300
350
400
450
500

v1
.0

v1
.1

v1
.4

v2
.0

v2
.1

v2
.2

v3
.0

v3
.1

v4
.2

v4
.3

W
ei

gh
t V

al
ue

Model Version

MM - Model Type Instance
Weight : PUS Applications

ACS ONS CDH

0

50

100

150

200

250

300

350

v1
.0

v1
.1

v1
.4

v2
.0

v2
.1

v2
.2

v3
.0

v3
.1

v4
.2

v4
.3

W
ei

gh
t v

al
ue

Model Version

MM - Model Type Instance Weight:
PUS Services

ACS‐
Service‐1

ACS‐
Service‐2

ACS‐
Service‐3

ACS‐
Service‐8

ONS‐
Service‐1

ONS‐
Service‐3

ONS‐
Service‐8

Specific model element Weight-factor

Sequence/Choice (ASN.1) 2

Simple Datatype (ASN.1) 1

Interfaces MTIW value of Function_1

Interface1 2+1 = 3

Interface2 2+(2+1+1)+(2+1) = 9

Total 12 Applied weight–factor and formula

Small TASTE IV example function with correlating ASN.1 interface parameters

MTIW result

Model metrics assessment results (2/3)

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 8

Model Type Instances per Use Case (MTIpUC)
Amount of model type instances per use case has to be
counted. Here, a use case is the implementation of a test for a
software requirement

Results
• Removal of range between min and max shows

homogenisation of models
• High values indicate low functional cohesion in system
• Range caused by requirements, when they are to coarse

grained defined

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

v1
.0

v1
.1

v1
.4

v2
.0

v2
.1

v2
.2

v3
.0

v3
.1

v4
.2

v4
.3

MM Model Type Instances per Use
Case ‐ Services

MTIpUC
average

MTIpUC
MAX

MTIpUC
MIN

0

2

4

6

8

10

12

14

v1.0 v1.4 v2.1 v3.0 v4.2

MM Model Type Instance per Use‐
Case ‐ Sub‐Services

MTIpUC
average

MTIpUC
MAX

MTIpUC
MIN

Use Case MTIpUC
Value

use_case1 2
use_case2 2

Small TASTE IV example system TASTE MSC use_case1

TASTE MSC use_case2

MTIpUC referring to TASTE IV functions

Model metrics assessment results (3/3)
Model Comment Frequency
Ratio between number of model comment lines and lines of
model code plus number of model comment lines

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 9

Results
• Difficult to comment models, when they are very self-

explaining, like ASN.1.
• The jitter between the maximum and the minimum is rather big

and not closing throughout the lifecycle, which is due to
different model views and their technology

• But all files are above 20%, and the average is almost at 30% .

Lines of model code
Counting the number of model lines per model file (excluding
comments and blank lines)

Results
• Result depends on modelling language, ASN.1 requires more

lines of code than most custom domain specific languages
• Transfer of this metric to a graphical model requires re-

definition of ‘lines’, e.g. to specific model components
• Forces the developer to think about a good and logical

distribution of a model over multiple files.
• Shows that min to max gap closes over time, increasing

balance.

0

10

20

30

40

50

60

70

80

v1.0 v2.0 v3.1 v4.2 v4.3

MM ‐Model Comment Frequency

Model Comment
Frequency Average

Model Comment
Frequency MIN

Model Comment
Frequency MAX 0

500

1000

1500

2000

2500

3000

v1.0 v2.0 v3.1 v4.2 v4.3

MM ‐ Lines of Model Code

Lines of
Model Code
Average

Lines of
Model Code
MIN

Lines of
Model Code
MAX

Model-Based Software Development Lifecycle following V-Model

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 10

Models Auto
Code

Manual
Code

MBSD Lifecycle Demonstrator Design
Workflow
1. Define computation independent PUS, communication data and

communication test model
2. Refine platform independent model in TASTE Interface View
3. Generate code skeletons from TASTE Deployment View
4. Test-driven implementation of OBSW

Applied standards and methodologies
• ECSS PUS, OMG Model-driven Architecture standard, Model-

based testing taxonomy, TASTE inherent standards

Use case
• Parts of ACS, ONS and CDH of an actual small satellite mission of

DLR
• Targeting lab quality (x86), no flight H/W

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 11

PaTaS demonstrator design

Here:
Collecting Model

Metrics

Here:
Collecting

functionality
reports

Here:
Collecting S/W

metrics

Traceability of artefacts: Document to Model to Code

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 12

Artefact Size
Use case 90 TM/TC messages

Model size

19,340 lines with
PAL: 126 lines
DTVL: 401 lines
TASTE IV: 5593 lines (only AADL)
TASTE DV: 188 lines (only AADL)
ASN1: 13,032 lines

Unit‐test size 5,928 lines

Integration Tests 19,723 lines

OBSW (user mode) 3,334 lines

OBSW (TASTE mode)
370,887 lines
(with PrintTypes.c: 105,925; and
PrintTypesAsASN1.c 215,161)

• Bidirectional traceability allows reversal of working direction

• Automatic traceability update prevents a loss of the trace

Taraceability of the artefacts of the demonstrator

PUS Architectural Language (PAL) editor

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 13

Applications contain services

Services contain telemetry and
tele-command subservices

Subservices are linked to
ASN.1 messages

PUS Archtitectural Language editor

ASN.1 editor

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 14

All frontend editors

• offer auto completion

• Syntax highlighting

• Syntax validation

ASN1. editor

• Type definition

• Value assignment

• Transforms ASN.1 to Ecore model

• Easy integratable with custom code generator

• Or existing tools to translate Ecore model to X

ASN.1 editor

Data Testing and Verification Language (DTVL) editor

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 15

• Allows the description of use cases as black

boxes tests

• Exploits the TM/TC interface of satellites

• Enables referencing TM or TC message

instances

• Based on Linear Temporal Logic

• Enriched to describe periodic message events

• Could be used to describe the up and downlink

of entire mission phases

Data Testing and Verification Language editor

TASTE Interface and Deployment View

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 16

PaTaS use case in TASTE Interface View

PaTaS use case in TASTE Deployment View

Automatic model metric collection

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 17

Model Coupling metric as example

Module Type Instance Weight metric

Recommendations for ECSS
ECSS-Q-80 (ST+HB)
• Minor adaptions in various clauses
• Reference model-based software quality model
• 10 Model metrics
• Tailoring recommendations for the model metrication programme
• Model metrics applicability and thresholds based on criticality
• 3 new sub-characteristics

ECSS-E-40 (ST+HB)
• Minor adaptions in various clauses
• Model-based development life cycle considering various development methodologies
• Model Driven Architecture elaboration as standard background
• Differentiation of Modelling standard and Modelling guideline

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 18

Model Metric Thresholds

• Finding optimal thresholds for model metrics takes
further evaluation/usage

• Thresholds are difficult to determine, as they depend on
the used underlying software standard (here: PUS) and the
used modelling languages/tools. Model metrics have to be
tailored under consideration of the used standards and
modelling methods/tools

• Recommendation: Keep the range in the model metric results
as small as possible so that it is well balanced

• Recommendation: Average values might be a good starting
point

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 19

Current metric threshold values

Qualitative conclusion: Evaluation Order Matters

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 20

• Next to the classification based on their evaluable characteristics,
model metrics can be grouped regarding their analytical capability

• Analytic capabilities of model metrics:
• Conformance scanning

• forces developers to create overview and standard
conformance within their models.

• Model Comment Frequency, Adherence to Modelling
Conventions, Lines of Model Code

• Structural scanning
• give detailed insight on the structural design and data flow

within the product
• Model Coupling, Model Type Instance Weight, Module

Fan-in/out
• Behavioural scanning

• related to structural scanning, but targets mainly on the
functional requirement and the specification

• Interaction Diagram Coverage, Model Type Instances per
Use Case, Use Cases per Model Type Instance

Group A Group B Group C

Group A Group B Group C

Group A Group B Group C

Further Qualitative Conclusiones
• Balance is major driver in the modelling phases

• Complexity is major driver in the coding phases

• Single-view model metrics are not meaningful when conducting model-driven development, as the source
code can also be evaluated with existing tools

• Quality is added mainly in the modelling phases, but has to be maintained in the coding phases

• Model metrics also allow an assessment of the software requirements, as they determine their extent
over the system and their granularity

• It is visible how good the testing regarding fault tolerance is. There could be even a factor between fault
tolerance and expected behaviour test cases

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 21

Credit for GIFs: openclipart.org

Next stop: Model Metricator Tool

• Work in progress
• Small adaptable tool to evaluate the quality of models
• Adaptable to all technologies
• We search partners, being model owners, who want to have a tool to evaluate their model quality (for free)
• And we search collaborators
• Contact: kilian.hoeflinger@dlr.de

> TEC-ED & TEC-SW Final Presentation Days > K. Hoeflinger • PaTaS > 09. May 2018DLR.de • Chart 22

