

Enabling concepts: Packaging Technologies

Ana Collado / Liam Murphy ESA / TEC-EDC 01/10/2018

ESA UNCLASSIFIED - For Official Use

Enabling concepts: Packaging Technologies

Drivers for the future:

- Higher speed (>Gbps serial link)
- Higher integration between different active parts technologies
- Higher power dissipation
- Parts availability and market trends (e.g. Plastic parts, copper wire)
- Environmental regulation requirements (Lead free components)

Emerging Packaging Technologies for Space applications

Consisting

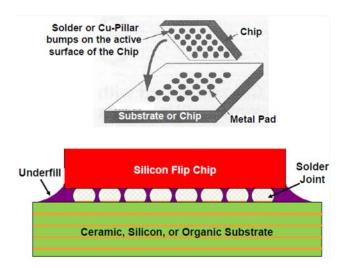
ECSS-Q-ST-60-13C e Plastic Ball Grid Array (PBGA): wire bonding on organization

ESCC 9000 Flip-chip on (

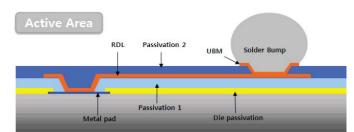
Plastic Ball Grid Array (PBGA): Flip-chip on organic substrate

Wafer Level Packaging: Fan-in or Fan Out WLP

2D & 2.5D packaging


3D Packaging

Enabling concepts: Flip chip packaging


- Concept description:
 - Could be done onto ceramic or organic substrate (e.g.PBGA)
 - Different bumping solutions (SAC alloys, Cu pillar)
- Technology Benefits:
 - Lower inductance than wire bonding
 - Better bandwidth performance
 - Lead free bumping (REACH compliant)
- Technology Drawbacks:
 - Non-hermetic packages
 - Little proven flight heritage
- Space acceptability:
 - Extensive reliability testing related to Lead Free bumping and plastic packaging
 - Establishment of procedures and requirements for manufacturing and test

Enabling concepts: Wafer Level Packaging

- Concept description:
 - FI-WLP: Fan-in redistribution
 - FO-WLP: Fan out redistribution with final molding
- > Technology Benefits:
 - Suitable for new sub-micron technologies (e.g. <28nm)
 - Small Form Factor / Lower cost => High Drive from Mobile and IoT markets
- > Technology Drawbacks:
 - Dielectric strength /reliability of Redistribution Layers.
 - Final encapsulation method is molded plastic (thermal management issues)
- Space acceptability:
 - Lack of definition for testing of BEOL manufacturing
 - Qualification approach similar to the silicon qualification

Enabling concepts: 2D / 2.5D Packaging

- Concept description:
 - 2D / 2.5D Packaging (TSV).
 - Silicon interposer, with or without TSVs. Different options/configurations possible
- > Technology Benefits:
 - Integration of different technologies (e.g. RF/ Digital)
- Technology Drawbacks:
 - Use of Copper pillars with tin content > 97%
 - Micro-copper pillars technology still evolving
 - Complex testing procedures
- Space acceptability:
 - High diversity of technologies and unknown reliability level (for Flight applications)

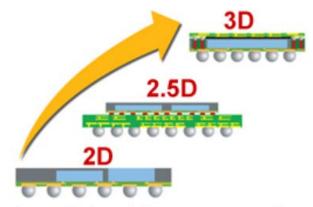
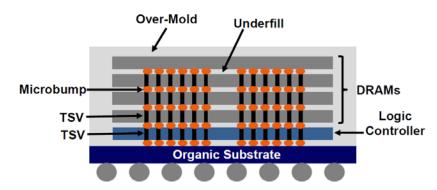


Fig. 1: Packaging solutions. Source STATS ChipPAC

ESA UNCLASSIFIED - For Official Use



Enabling concepts: 3D Packaging

- Concept description:
 - Proven Tech: Stacked dies and Package-on-Package (PoP)
 - Emerging Tech: 3D Wafer Stacking with TSV interconnects
- Technology Benefits:
 - Shorter-faster interconnections
 - Solution for Memory on Logic
- Technology Drawbacks:
 - Thermal management issues
 - Micro-copper pillar & TSV technologies
 - Limited shelf life (Moisture and solderability issues)
- Space acceptability:
 - Complex Supply Chain. Qualification of both MEOL and BEOL processes

Conclusions

From the packaging perspective:

- Advanced packaging is perceived as a big variety of possible options in different maturity levels.
- Requirements flow down from components performance requirements/needs
- Reduced data available on space testing performed of Advanced Packaging
- Complex supply chain adds difficulty to the qualification of the product
- Advanced Packaging suppliers mainly in Far East
- Upcoming packaging materials restrictions (RoHs, REACH)

=> Could ESA use/qualify any of these technologies in the future?

ESA UNCLASSIFIED - For Official Use

Advanced Packaging Conference

ESA UNCLASSIFIED - For Official Use

CBGA:

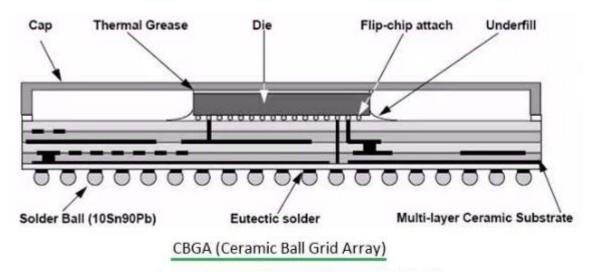


Image Cited from Test and Measurement World

Organic BGA:

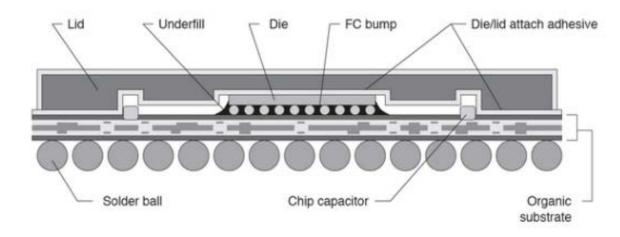
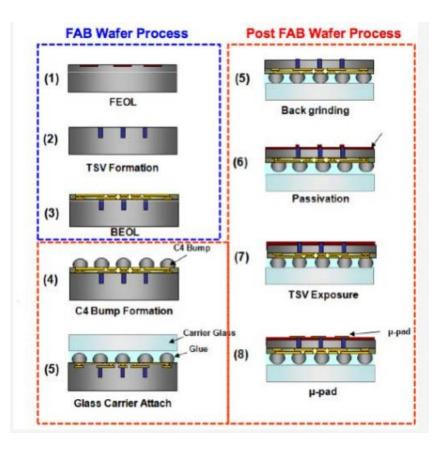
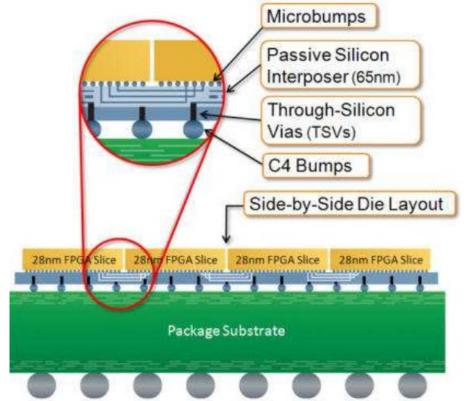


Image Cited from Shipco Circuits



TSV Formation:



Xilinx Virtex-7 2000T

 ${\sf ESA~UNCLASSIFIED~-} \ {\sf For~Official~Use}$

