

On-Board Networks and High Speed links

ESA - TEC-EDP - Dirk Thurnes

01/10/2018

ESA UNCLASSIFIED - For Official Use

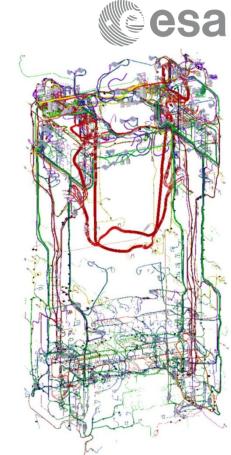
On-board data handling networks – a motivation

- Current status
 - Several solutions exist for low-speed Command & Control and high-speed instrument data handling
 - Usually leads to two separate solutions for data handling
 - o leads to unnecessary high number of interfaces and interconnects
 - > New instrument, sensor & data processing concepts need Gbps of data transfer rate
 - High speed links need SerDes solutions to achieve this
 - SerDes needs higher protocols to work
 - Island protocol solutions developed by different space industries
 - not inter-operable, not standardized, tiny user base, high risk
 - Both points results in complex design, many connectors, high mass, high volume, high costs, …

ESA UNCLASSIFIED - For Official Use

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 2

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ ■ = = = ■ ■ ■ ■ = = = ₩ · · ·


Why change – It was always like this

- Interface reduction is a recurrent topic, but
- Evolution on the topic seems to be difficult

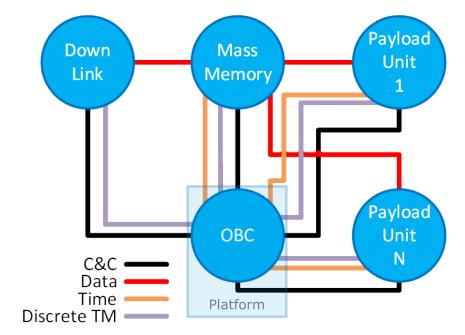
"I'm involved in missions for 20 years and did not see a significant change on this over the years" a system engineer

- Nevertheless it seems to make sense to think about it –
 A huge satellite has (SPCD 2013 Malagoli)
 - > 50.000 connections
 - 1.000 connectors
 - 20.000 meters of wires
 - harness mass exceeding 100kg

ESA UNCLASSIFIED - For Official Use

Picture: Courtesy of ADS - SPCD 2013 ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 3

· = ■ ► = + ■ + ■ = ≔ = 0 ■ ■ = = ≈ = ■ ■ ■ ■ ■ = ** ** **


European Space Agency

From now on, focusing on Payload Interfaces

- Instrument Data
 - SpaceFibre, WizardLink, SpaceWire
- Command & Control
 - SpaceWire, CAN, MIL-1553, UART
- Timing
 - > 1 Pulse per Second synchronization
- Discrete Signals (ECSS-E-ST-50-14C based)
 - Digital
 - o Switch operation
 - o Status detection
 - Analog
 - o Power telemetry
 - o Temperature telemetry

ESA UNCLASSIFIED - For Official Use

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 4

Solution: Mixed-criticality messages network focus on Payload

Combine all the services in a single solution

Analog and digital telemetry

instrument data rate

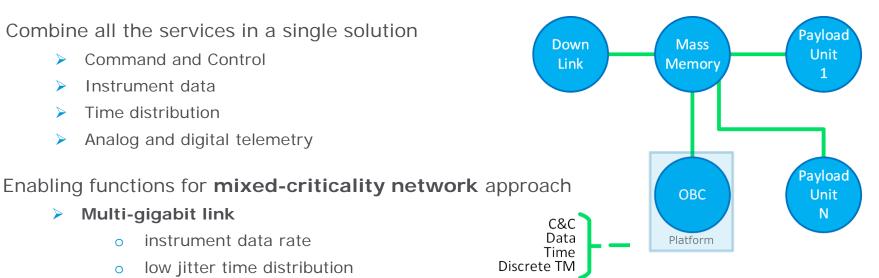
Command & Control applications

low jitter time distribution

Change of mind of system engineers

Protocol which provides Quality-of-Service for

Command and Control


Instrument data Time distribution

Multi-gigabit link

0

0

- Make better use of available \Rightarrow cables and cable bandwidth (R. Janssen, TEC-EDM)
- Detailed presentation: ADCSS 2017 D. Thurnes "Reduction of the Harness the One Interface Illusion reloaded" https://indico.esa.int/indico/event/182/session/1/contribution/13/material/1/0.pdf

ESA UNCLASSIFIED - For Official Use

 \geq

*

*

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 5

A possible solution - SpaceFibre

- SpaceFibre is
 - the successor of (and is compatible with) SpaceWire
 - allows 15 times higher data rates up to 6.25 Gbps (10 Gbps on fibre)
 - targeted for mixed-criticality networks and data streaming applications
 - ECSS standardized (public review finished)
 - available now in TRL6 for payload networks and point-2-point links
- Has been designed with constraints of space applications in mind
 - Low resource needs, suited for space qualified devices
 - Error detection and correction (or not, if you prefer that)
 - Familiar Quality-of-Service concepts
 - Galvanic isolation (copper and fibre based harness)
 - Lessons learned of 20 years of SpaceWire integrated

ESA UNCLASSIFIED - For Official Use

Alternative High Speed Links

- Ethernet based approaches like Time-Sensitive Networking (TSN)
 - wide user base, available COTS protocol anaylsers can be used
- Multi-Gbit/s high speed links use SerDes devices
 - these are protocol independent
 - \Rightarrow commercial devices and COTS PHY test equipment can be used
- But are commercial SerDes devices and functional blocks in FPGA/ ASICs/ processing devices suited for space? It seems to be sure that
 - > we need a protocol with powerful **error detection and correction**, as well as
 - Quality-of-Service to deal with shortcomings of commercial devices for mixedcriticality networks
 - > protocol implemented in hardware (NOT software) due to reliability requirements

are such features included in terrestrial protocols and devices?

ESA UNCLASSIFIED - For Official Use

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 7

High speed links – the next leap

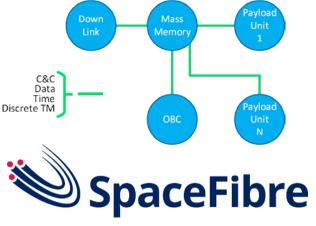
- **Optical Physical Layer** •••
 - Make electro-optical transceiver available
 - Laser and Receive diodes are suited for space applications, but 0
 - Laser driver and receiver transimpedance amplifiers are not 0
 - Possible solutions from Radiall, Reflex Photonics or Ultracomm
 - optical harness and connectors are available
- Advantages

ESA UNCLASSIFIED - For Official Use

- Small footprint (connector and harness)
- perfect galvanic isolation
- no EMC and grounding issues
- Iow mass, scales nicely
- long distance (e.g. launchers)

The problem => get missions to adopt it

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 8



Conclusion

- esa
- High speed serial links with suitable protocol allow mixed-criticality networks
 - Allows reduction of the interfaces
 - Results in less interconnects
 - Results in more efficient satellite design
 - Provides more resources for science & application
- SpaceFibre is a suitable solution for this approach
 - Future-proof data transfer bandwidth
 - Standardized protocol => interoperability, low risk
 - Commercial Ethernet based solutions could be an alternative (to be demonstrated)
- Next steps
 - Adopt mixed-criticality network in upcoming missions
 - make optical fibre based solutions a reality
 - build more efficient satellites, free resources, do

ESA UNCLASSIFIED - For Official Use

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 9

SpaceFibre – The European High-Speed Link

Thank You

4

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 10

ESA UNCLASSIFIED - For Official Use

Backup Slides

ESA UNCLASSIFIED - For Official Use

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 11

+

ESA UNCLASSIFIED - For Official Use

Successfully demonstrated in RTG4 FPGA

- - - Available from Star-Dundee
- SpFi Network Router IP core

SpFi Network Node IP cores

- available from 4 different European providers (ESA, Gaisler, IngeniArs, Star-Dundee)

- Implementation demonstrated on RTAX2000, RTG4 and several Xilinx devices
- Successful interoperability tests, including JAXA and ROSCOSMOS IP cores

AIRBUS

ThalesAlenia

Space

Together

European Space Agency

STAR-Dundee

SpaceFibre – Current Status (1/3)

SpFi ECSS standard •••

WG members from Airbus DS, Cobham Gaisler, IngeniArs, OHB, RUAG Space, STAR-Dundee, Thales Alenia Space

SpaceFibre – Current Status (2/3)

- SpFi enabled hardware
 - FPGA: RTG4, Brave Large/ Ultra, Xilinx
 - Processors: DAHLIA, Ramon Chips RC64
- SpFi FM Harness and Connectors
 - Available from Axon, based on AXOMACH series
 - ESCC standards available, publication expected in 2018

@MNeT++

- o ESCC Detail Spec No.3409/001, 3401/088 and 3401/089
- Network simulators
 - SpaceFibre models available for
 - o OMNeT++
 - o OPNET

ESA UNCLASSIFIED - For Official Use

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 13

· = ■ ► = = + ■ = ≔ = 1 ■ ■ = = = ₩ **■** ■ ■ ■ **■** ₩

SpaceFibre – Current Status (3/3)

- SpaceFibre test equipment
 - Protocol analyzer available from 3 different providers (ESA, IngeniArs, Star-Dundee)

teletel

Picture: Star-Dundee, Star-Fire

- Physical Layer testing COTS equipment from several manufacturers
 - Transmitter: LeCroy WaveMaster SDA
 - Receiver: Keysight J-BERT M8020A
- EGSE providers
 - Celestia-STS EDTE
 - Teletel iSAFT

ESA UNCLASSIFIED - For Official Use

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 14

European Space Agency

TELEDYNE LECROY Everywhere**you**look[®]

SpaceFibre – the next steps (1/3)

- Make SpaceFibre available in 65nm (6.25 Gbps) or 28nm (12.5 Gbps)
 ASIC technology
 - SpaceFibre Interface Chip
 - SpaceFibre enabled SerDes with common interfaces (parallel, SpW, I2C)
 - o use case: allows for low complexity FPGA solutions, heritage designs
 - o under development in ESA
 - o up to FPGA demonstration, ASIC run to be funded
 - SpaceFibre Routing Switch
 - Basic functions defined and already used in development programs
 - Requirements consolidation on-going for advanced features
 - up to FPGA demonstration, ASIC run to be funded
- Transaction Layer to be defined for end-2-end QoS

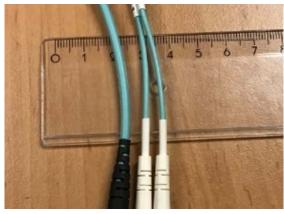
ESA UNCLASSIFIED - For Official Use

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 15

SpaceFibre – the next steps (3/3)

12 Fibre transceiver & Harness

Optical connector 6 SpFi links at 10Gbps each smaller than SpW connector at 200Mbps



ESA UNCLASSIFIED - For Official Use

Harness diameter 12 Fibre 60 Gbps (6x10 Gbps) vs single SpW cable (200 Mbps)

Harness scalability Single vs 12 fibre cable – scales nicely

Not to forget

- no EMC issues
- no grounding problems

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 16

SpaceFibre – Roadmap

2021

- Radiation-hardened SpaceFibre ASICs available.

2019

- Finalization of 'transaction layer'
- ASIC designs become available.

2018

- SpaceFibre ready to be adopted by missions
- Several IP cores available for network node and router
- Network simulation tools available
- Complete suit of test equipment available
- ECSS and ESCC standards to be published

ESA - TEC-EDP - Dirk Thurnes | ESTEC | 01/10/2018 | Slide 17

ESA UNCLASSIFIED - For Official Use